This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188153 #13 Apr 27 2018 09:22:45 %S A188153 0,0,112,1976,8160,19312,35024,55104,79528,108296,141408,178864, %T A188153 220664,266808,317296,372128,431304,494824,562688,634896,711448, %U A188153 792344,877584,967168,1061096,1159368,1261984,1368944,1480248,1595896,1715888,1840224 %N A188153 Number of 8-step self-avoiding walks on an n X n square summed over all starting positions. %C A188153 Row 8 of A188147. %H A188153 R. H. Hardin, <a href="/A188153/b188153.txt">Table of n, a(n) for n = 1..50</a> %F A188153 Empirical: a(n) = 2172*n^2 - 12500*n + 16096 for n>6. %F A188153 Conjectures from _Colin Barker_, Apr 27 2018: (Start) %F A188153 G.f.: 8*x^3*(2 + x)*(7 + 99*x + 111*x^2 - 15*x^3 - 18*x^4 - 3*x^5) / (1 - x)^3. %F A188153 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>9. %F A188153 (End) %e A188153 Some solutions for 4 X 4: %e A188153 0 0 0 0 0 7 8 0 1 4 5 0 6 7 8 0 6 7 0 0 %e A188153 8 7 6 1 0 6 3 2 2 3 6 7 5 4 0 0 5 8 0 0 %e A188153 0 0 5 2 0 5 4 1 0 0 0 8 0 3 0 0 4 0 0 0 %e A188153 0 0 4 3 0 0 0 0 0 0 0 0 1 2 0 0 3 2 1 0 %Y A188153 Cf. A188147. %K A188153 nonn %O A188153 1,3 %A A188153 _R. H. Hardin_, Mar 22 2011