A188155 Number of 10-step self-avoiding walks on an n X n square summed over all starting positions.
0, 0, 0, 3696, 26000, 82032, 175312, 303328, 464304, 657848, 883928, 1142544, 1433696, 1757384, 2113608, 2502368, 2923664, 3377496, 3863864, 4382768, 4934208, 5518184, 6134696, 6783744, 7465328, 8179448, 8926104, 9705296, 10517024
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..8..9.10....0..7..8..9....0..3..4..5....0..0..6..7....1..0..0.10 ..0..7..6..1....0..6..5.10....1..2..7..6....0..4..5..8....2..7..8..9 ..0..0..5..2....0..3..4..0...10..9..8..0....0..3..2..9....3..6..0..0 ..0..0..4..3....0..2..1..0....0..0..0..0....0..0..1.10....4..5..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A188147.
Formula
Empirical: a(n) = 16268*n^2 - 115548*n + 186528 for n>8.
Conjectures from Colin Barker, Apr 27 2018: (Start)
G.f.: 8*x^4*(462 + 1864*x + 1890*x^2 + 440*x^3 - 314*x^4 - 222*x^5 - 49*x^6 - 4*x^7) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>11.
(End)
Comments