This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188160 #20 Jun 03 2018 03:49:33 %S A188160 0,1,2,4,5,6,7,8,10,12,12,12,13,18,20,20,17,18,21,28,30,30,24,24,25, %T A188160 32,40,42,42,35,31,32,36,45,54,56,56,48,40,40,41,50,60,70,72,72,63,54, %U A188160 49,50,55,66,77,88,90,90,80,70,60,60,61 %N A188160 For an unordered partition of n with k parts, remove 1 from each part and append the number k to get a new partition until a partition is repeated. a(n) gives the maximum steps to reach a period considering all unordered partitions of n. %C A188160 Alternatively, if one iteratively removes the largest part z(1) and adds 1 to the next z(1) parts to get a new partition until a partition recurs, one gets the same maximum number of steps to reach a period. %C A188160 The two shuffling operations are isomorphic for unordered partitions. %C A188160 The two operations have the same length and number of periods for ordered and unordered partitions. %C A188160 The steps count the operations including any pre-periodic part up to the end of first period, that is, the number of distinct partitions without including the first return. %D A188160 R. Baumann LOG IN, 4 (1987) %D A188160 Halder, Heise Einführung in Kombinatorik, Hanser Verlag (1976) 75 ff. %H A188160 Ethan Akin, Morton Davis, <a href="http://www.jstor.org/stable/2323643">Bulgarian solitaire</a>, Am. Math. Monthly 92 (4) (1985) 237-250 %H A188160 J. Brandt, <a href="http://dx.doi.org/10.1090/S0002-9939-1982-0656129-5">Cycles of partitions</a>, Proc. Am. Math. Soc. 85 (3) (1982) 483-486 %F A188160 a((k^2+k-2)/2-j) = k^2-k-2-(k+1)*j with 0<=j<=(k-4)/2 and 4<=k. %F A188160 a((k^2+k+2)/2+j) = k^2-k-k*j with 0<=j<=(k-4)/2 and 4<=k, %F A188160 a((k^2+2*k-(k mod 2))/2+j) = (k^2+2*k-(k mod 2))/2+j with 0 <= j <= 1 and 2 <= k. %F A188160 a(T(k)) = 2*T(k-1) = k^2-k with 1 <= k for the triangular numbers T(k)=A000217(k). %e A188160 For k=6 and 0 <= j <= 1: %e A188160 a(19)=21; a(20)=28; a(21)=30; a(22)=30; a(23)=24; a(24)=24; a(25)=25. %e A188160 For n=4: (1+1+1+1)->(4)->(3+1)->(2+2)->(2+1+1)--> a(4)=4. %e A188160 For n=5: (1+1+1+1+1)->(5)->(4+1)->(3+2)->(2+2+1)->(3+1+1)-->a(5)=5. %p A188160 A188160 := proc(n) %p A188160 local k,j,T ; %p A188160 if n <= 2 then %p A188160 return n-1 ; %p A188160 end if; %p A188160 for k from 0 do %p A188160 T := k*(k+1) /2 ; %p A188160 if n = T and k >= 1 then %p A188160 return k*(k-1) ; %p A188160 end if; %p A188160 if k>=4 then %p A188160 j := T-1-n ; %p A188160 if j>= 0 and j <= (k-4)/2 then %p A188160 return k^2-k-2-(k+1)*j ; %p A188160 end if; %p A188160 j := n-T-1 ; %p A188160 if j>= 0 and j <= (k-4)/2 then %p A188160 return k^2-k-k*j ; %p A188160 end if; %p A188160 end if; %p A188160 if k >= 2 then %p A188160 j := n-(k^2+2*k-(k mod 2))/2 ; %p A188160 if j>=0 and j <= 1 then %p A188160 return (k^2+2*k-(k mod 2))/2+j %p A188160 end if; %p A188160 end if; %p A188160 end do: %p A188160 return -1 ; %p A188160 end proc: # _R. J. Mathar_, Apr 22 2011 %Y A188160 Cf. A185700, A177922, A184996, A037306. %K A188160 nonn %O A188160 1,3 %A A188160 _Paul Weisenhorn_, Mar 28 2011