cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188183 Number of strictly increasing arrangements of 5 numbers in -(n+3)..(n+3) with sum zero.

Original entry on oeis.org

12, 32, 73, 141, 252, 414, 649, 967, 1394, 1944, 2649, 3523, 4604, 5910, 7483, 9343, 11538, 14090, 17053, 20451, 24342, 28754, 33751, 39361, 45654, 52662, 60459, 69079, 78602, 89064, 100551, 113101, 126804, 141702, 157891, 175413, 194370, 214808
Offset: 1

Views

Author

R. H. Hardin Mar 23 2011

Keywords

Comments

Row 5 of A188181

Examples

			Some solutions for n=5
.-5...-8...-7...-8...-6...-4...-8...-6...-8...-5...-8...-7...-6...-6...-8...-7
.-3...-3...-4...-6...-2...-3...-7...-5...-2...-3...-2...-4...-5...-5...-1...-6
.-1...-2....0....0...-1...-1....4...-2....2...-1....1...-2....2...-3....1....1
..3....5....4....6....2....0....5....6....3....1....3....6....3....6....3....4
..6....8....7....8....7....8....6....7....5....8....6....7....6....8....5....8
		

Formula

Empirical: a(n)=2*a(n-1)-a(n-3)-2*a(n-5)+2*a(n-6)+a(n-8)-2*a(n-10)+a(n-11).
Empirical: a(n) = 427*n^2/144 +155*n/32 +5501/1728+23*n^4/288 +115*n^3/144 -3*(-1)^n*n/32-15*(-1)^n/64 +A057077(n+1)/8 -2*A061347(n+1)/27; g.f. -x*(12 +8*x +9*x^2 +7*x^3 +2*x^4 +7*x^5 +2*x^6 +3*x^7 -2*x^8 -5*x^9 +3*x^10) / ( (x^2+1) *(1+x+x^2) *(1+x)^2 *(x-1)^5 ). - R. J. Mathar, Mar 26 2011