cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188213 Number of nondecreasing arrangements of 6 numbers in -(n+4)..(n+4) with sum zero.

Original entry on oeis.org

338, 676, 1242, 2137, 3486, 5444, 8196, 11963, 17002, 23612, 32134, 42955, 56512, 73294, 93844, 118765, 148718, 184430, 226694, 276373, 334402, 401792, 479632, 569093, 671430, 787986, 920192, 1069575, 1237756, 1426456, 1637498, 1872809
Offset: 1

Views

Author

R. H. Hardin, Mar 24 2011

Keywords

Comments

Row 6 of A188211.

Examples

			Some solutions for n=3:
.-3...-6...-6...-4...-6...-4...-5...-4...-5...-5...-4...-6...-4...-4...-6...-3
.-3...-2...-2...-3...-6...-2...-2...-3...-5...-4...-4...-5...-1...-3...-4...-3
.-3...-2...-1...-2...-5...-1...-2...-1...-2....0....0...-3...-1....0....0...-2
.-3....0....0...-2....5....0...-2...-1....3....2....0....4....0....2....0...-1
..5....4....3....4....6....3....4....4....4....2....4....4....2....2....5....3
..7....6....6....7....6....4....7....5....5....5....4....6....4....3....5....6
		

Crossrefs

Cf. A188211.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + 2*a(n-5) - a(n-6) - a(n-7) + 2*a(n-8) - a(n-10) - 2*a(n-11) + 3*a(n-12) - a(n-13).
Empirical g.f.: x*(338 - 338*x - 110*x^2 + 101*x^3 + 235*x^4 - 174*x^5 - 41*x^6 + 279*x^7 - 83*x^8 - 217*x^9 - 146*x^10 + 395*x^11 - 151*x^12) / ((1 - x)^6*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Apr 27 2018