A188213 Number of nondecreasing arrangements of 6 numbers in -(n+4)..(n+4) with sum zero.
338, 676, 1242, 2137, 3486, 5444, 8196, 11963, 17002, 23612, 32134, 42955, 56512, 73294, 93844, 118765, 148718, 184430, 226694, 276373, 334402, 401792, 479632, 569093, 671430, 787986, 920192, 1069575, 1237756, 1426456, 1637498, 1872809
Offset: 1
Keywords
Examples
Some solutions for n=3: .-3...-6...-6...-4...-6...-4...-5...-4...-5...-5...-4...-6...-4...-4...-6...-3 .-3...-2...-2...-3...-6...-2...-2...-3...-5...-4...-4...-5...-1...-3...-4...-3 .-3...-2...-1...-2...-5...-1...-2...-1...-2....0....0...-3...-1....0....0...-2 .-3....0....0...-2....5....0...-2...-1....3....2....0....4....0....2....0...-1 ..5....4....3....4....6....3....4....4....4....2....4....4....2....2....5....3 ..7....6....6....7....6....4....7....5....5....5....4....6....4....3....5....6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A188211.
Formula
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + 2*a(n-5) - a(n-6) - a(n-7) + 2*a(n-8) - a(n-10) - 2*a(n-11) + 3*a(n-12) - a(n-13).
Empirical g.f.: x*(338 - 338*x - 110*x^2 + 101*x^3 + 235*x^4 - 174*x^5 - 41*x^6 + 279*x^7 - 83*x^8 - 217*x^9 - 146*x^10 + 395*x^11 - 151*x^12) / ((1 - x)^6*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Apr 27 2018
Comments