A188214 Number of nondecreasing arrangements of 8 numbers in -(n+6)..(n+6) with sum zero.
8512, 17575, 33885, 61731, 107233, 178870, 288100, 450096, 684572, 1016737, 1478379, 2109067, 2957499, 4083008, 5557206, 7465798, 9910578, 13011585, 16909449, 21767949, 27776747, 35154340, 44151244, 55053378, 68185688, 83916031
Offset: 1
Keywords
Examples
Some solutions for n=3 .-6...-9...-8...-2...-9...-6...-9...-9...-8...-7...-9...-6...-9...-8...-6...-9 .-3...-8...-6...-2...-5...-5...-6...-6...-5...-5...-3...-6...-4...-8...-6...-3 .-3...-3...-3...-1...-1...-5...-4...-4...-4...-5...-3...-5...-1...-5...-3...-3 .-3...-2...-3...-1....2...-2...-1...-1...-4...-5....0....0...-1...-1....0...-2 .-2....2...-1....0....2....0....0....2....0....2....1....0...-1....1....2...-1 ..3....6....6....1....2....0....3....5....5....4....1....2....0....5....2....1 ..6....7....7....2....4....9....8....6....7....7....5....7....7....7....3....8 ..8....7....8....3....5....9....9....7....9....9....8....8....9....9....8....9
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n)=3*a(n-1)-2*a(n-2)-3*a(n-4)+4*a(n-5)-3*a(n-8)+3*a(n-9)-a(n-11)-a(n-12)+3*a(n-14)-3*a(n-15)+4*a(n-18)-3*a(n-19)-2*a(n-21)+3*a(n-22)-a(n-23)
Comments