cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A188227 Number of nondecreasing arrangements of n numbers in -(2n-2)..(2n-2) with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 3, 12, 81, 598, 4859, 41748, 374820, 3475284, 33053399, 320869264, 3167899567, 31721907390, 321494911644, 3292220700520, 34018798556265, 354312456839426, 3716173628641396, 39220841304052510, 416264662788000213
Offset: 1

Views

Author

R. H. Hardin Mar 24 2011

Keywords

Comments

Diagonal of A188236

Examples

			Some solutions for n=4
.-1...-3...-3...-3...-4...-5...-6...-5...-4...-5...-3...-3...-2...-6...-2...-4
.-1....0...-2...-1...-1...-2...-1....0....1...-1...-1...-3...-2...-4...-1...-4
..1....1....0....1...-1....1....2....2....1....2....2....3....2....4....0....2
..1....2....5....3....6....6....5....3....2....4....2....3....2....6....3....6
		

A188228 Number of nondecreasing arrangements of n numbers in -(n-1)..(n-1) with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 2, 4, 15, 58, 245, 1082, 5020, 24040, 118154, 592332, 3019280, 15604848, 81614541, 431227650, 2298833499, 12350952158, 66818754504, 363727676848, 1990946917066, 10952512200610, 60525264890259, 335856363303010, 1870732844007387
Offset: 1

Views

Author

R. H. Hardin Mar 24 2011

Keywords

Comments

Column 1 of A188236

Examples

			All solutions for n=4
.-3...-1...-2...-3...-3...-2...-1...-2...-3...-2...-3...-1...-2...-2...-3
.-1...-1....0....0...-2...-2...-1...-2...-3....0....0....0...-1...-1...-1
..1....0....1....1....2....1....1....2....3....0....0....0....0....1....2
..3....2....1....2....3....3....1....2....3....2....3....1....3....2....2
		

A188229 Number of nondecreasing arrangements of n numbers in -n..n with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 3, 7, 30, 119, 527, 2395, 11376, 55368, 275735, 1397063, 7185356, 37419881, 196993233, 1046785509, 5608211846, 30264466262, 164375822152, 897938065590, 4930713542112, 27202861579741, 150721902660263, 838367664692809
Offset: 1

Views

Author

R. H. Hardin Mar 24 2011

Keywords

Comments

Column 2 of A188236

Examples

			Some solutions for n=4
.-3...-2...-3...-2...-3...-4...-4...-4...-3...-4...-1...-2...-4...-3...-3...-1
.-2...-2...-3....0...-1...-2...-4....0....0...-3....0...-1....0...-3...-1...-1
..2....0....2....0....2....2....4....0....1....3....0...-1....2....3....0....0
..3....4....4....2....2....4....4....4....2....4....1....4....2....3....4....2
		

A188230 Number of nondecreasing arrangements of n numbers in -(n+1)..(n+1) with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 4, 12, 52, 221, 1019, 4818, 23522, 117209, 594789, 3062414, 15966168, 84132345, 447457816, 2399177028, 12956403904, 70416558196, 384897011042, 2114694606220, 11672750655842, 64705139473661, 360068911514032, 2010827078176568
Offset: 1

Views

Author

R. H. Hardin Mar 24 2011

Keywords

Comments

Column 3 of A188236

Examples

			Some solutions for n=4
.-3...-5...-5...-3...-3...-1...-4...-5...-4...-4...-2...-5...-4...-4...-4...-3
.-2...-5....0...-3....0...-1....1...-1...-2...-4...-2...-3...-1...-3...-3...-1
..1....5....1....2....1....0....1....2....2....3....1....3....2....2....3....2
..4....5....4....4....2....2....2....4....4....5....3....5....3....5....4....2
		

A188231 Number of nondecreasing arrangements of n numbers in -(n+2)..(n+2) with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 5, 17, 81, 374, 1818, 8964, 45225, 231596, 1202495, 6313385, 33473871, 178991409, 964308854, 5229780968, 28531772394, 156491164870, 862470267275, 4774186037351, 26533145487533, 148001670048543, 828332995017980
Offset: 1

Views

Author

R. H. Hardin Mar 24 2011

Keywords

Comments

Column 4 of A188236

Examples

			Some solutions for n=5
.-4...-6...-3...-6...-7...-7...-4...-4...-6...-7...-5...-3...-7...-7...-7...-4
.-4...-5...-2...-3...-4...-2...-2...-2...-2...-1...-5...-3...-6...-3...-5...-3
.-1....0...-1....1....2...-1...-1...-1....0....0...-4...-1....3...-1....3...-1
..4....4...-1....1....4....5....0....2....4....2....7....1....5....5....3....3
..5....7....7....7....5....5....7....5....4....6....7....6....5....6....6....5
		

A188232 Number of nondecreasing arrangements of n numbers in -(n+3)..(n+3) with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 6, 24, 121, 598, 3047, 15696, 81981, 432491, 2302608, 12355260, 66761159, 362992938, 1984748322, 10907074884, 60215001180, 333824553431, 1857784353244, 10375296176688, 58131888133855, 326686361277196, 1841007865239913
Offset: 1

Views

Author

R. H. Hardin, Mar 24 2011

Keywords

Examples

			Some solutions for n=4
.-4...-5...-5...-5...-7...-6...-7...-5...-4...-2...-6...-7...-3...-4...-1...-6
..0...-2....0...-3...-2....0...-6....1...-2....0...-6...-4...-3...-1...-1....1
..0....2....0....4....3....3....6....1....2....1....5....5....0....1....1....2
..4....5....5....4....6....3....7....3....4....1....7....6....6....4....1....3
		

Crossrefs

Column 5 of A188236.

A188233 Number of nondecreasing arrangements of n numbers in -(n+4)..(n+4) with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 7, 31, 172, 903, 4859, 26123, 141519, 769915, 4209720, 23118268, 127495912, 705885128, 3922515554, 21871461990, 122341995397, 686381562245, 3861568338064, 21781724157952, 123162942539680, 698010289536681
Offset: 1

Views

Author

R. H. Hardin Mar 24 2011

Keywords

Comments

Column 6 of A188236

Examples

			Some solutions for n=4
.-7...-3...-4...-6...-5...-7...-3...-4...-8...-8...-3...-6...-7...-8...-8...-6
.-5...-1...-2...-2...-5....1...-3...-4...-3...-3...-2....0...-4...-5...-6...-5
..5....1....1....1....4....2....1....0....3....5....2....0....4....6....7....4
..7....3....5....7....6....4....5....8....8....6....3....6....7....7....7....7
		

A188234 Number of nondecreasing arrangements of n numbers in -(n+5)..(n+5) with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 8, 40, 234, 1317, 7435, 41748, 234413, 1316060, 7395049, 41601836, 234385104, 1322693568, 7477225191, 42343586740, 240215460615, 1365117760484, 7771029244519, 44310379612078, 253062451888388, 1447507286439975
Offset: 1

Views

Author

R. H. Hardin Mar 24 2011

Keywords

Comments

Column 7 of A188236

Examples

			Some solutions for n=4
.-8...-6...-8...-9...-6...-4...-8...-8...-5...-6...-7...-4...-6...-8...-4...-7
..2...-2...-5...-1...-1...-4...-2....0...-3...-5...-4...-2....0...-6...-3...-5
..3....4....5....4...-1....3....2....2....4....4....5...-1....1....5....1....6
..3....4....8....6....8....5....8....6....4....7....6....7....5....9....6....6
		

A188235 Number of nondecreasing arrangements of n numbers in -(n+6)..(n+6) with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 9, 49, 311, 1852, 10994, 64370, 374820, 2171675, 12546170, 72337436, 416605786, 2397909069, 13799639040, 79425097850, 457295766838, 2634229243277, 15183632033377, 87578564420013, 505526226244917, 2920309324204918
Offset: 1

Views

Author

R. H. Hardin Mar 24 2011

Keywords

Comments

Column 8 of A188236

Examples

			Some solutions for n=4
-10...-7...-7...-8...-4...-9...-6...-4...-5...-9...-7...-6...-8...-4...-6...-7
.-7...-5...-6...-5...-1...-3...-6...-2...-3...-3...-5...-6....0...-3...-2....2
..7....4....4....3....1....3....3....0....1....6....2....2....0...-2...-1....2
.10....8....9...10....4....9....9....6....7....6...10...10....8....9....9....3
		

A188237 Number of nondecreasing arrangements of 4 numbers in -(n+2)..(n+2) with sum zero and not more than two numbers equal.

Original entry on oeis.org

15, 30, 52, 81, 121, 172, 234, 311, 403, 510, 636, 781, 945, 1132, 1342, 1575, 1835, 2122, 2436, 2781, 3157, 3564, 4006, 4483, 4995, 5546, 6136, 6765, 7437, 8152, 8910, 9715, 10567, 11466, 12416, 13417, 14469, 15576, 16738, 17955, 19231, 20566, 21960
Offset: 1

Views

Author

R. H. Hardin, Mar 24 2011

Keywords

Comments

Row 4 of A188236.

Examples

			Some solutions for n=4:
.-5...-4...-6...-3...-2...-5...-4...-4...-4...-4...-1...-6...-3...-2...-5...-4
.-3....1...-6...-1...-2....0...-1...-1....0...-4....0...-3...-2...-1...-1...-3
..2....1....6....1....0....0....1...-1....0....4....0....3....2....0....3....2
..6....2....6....3....4....5....4....6....4....4....1....6....3....3....3....5
		

Crossrefs

Cf. A188236.

Formula

Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
Empirical g.f.: x*(15 - 15*x + 7*x^2 - 15*x^3 + 19*x^4 - 7*x^5) / ((1 - x)^4*(1 + x + x^2)). - Colin Barker, Apr 27 2018
Showing 1-10 of 14 results. Next