A188240 Number of nondecreasing arrangements of 7 numbers in -(n+5)..(n+5) with sum zero and not more than two numbers equal.
1082, 2395, 4818, 8964, 15696, 26123, 41748, 64370, 96346, 140463, 200176, 279520, 383424, 517461, 688344, 903624, 1172142, 1503785, 1910034, 2403502, 2998722, 3711609, 4560190, 5564140, 6745632, 8128589, 9739838, 11608268, 13765902
Offset: 1
Keywords
Examples
Some solutions for n=4 .-6...-7...-9...-8...-7...-5...-8...-9...-4...-8...-6...-6...-6...-8...-9...-7 .-4...-5...-9...-6...-6...-5...-5...-8...-3...-7...-6...-5...-6...-8...-5...-7 .-2...-2....1...-3...-2...-1...-5...-8...-3...-3....0...-5...-3...-1...-1...-4 .-1....0....3...-1...-1...-1....0....3...-1...-1....0....1....1...-1....0...-1 ..1....3....3....1...-1....1....5....6....2....6....1....2....1....4....2....6 ..5....3....5....8....8....5....6....8....3....6....3....5....5....6....6....6 ..7....8....6....9....9....6....7....8....6....7....8....8....8....8....7....7
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-5)+a(n-6)-2*a(n-7)+2*a(n-8)+a(n-9)-a(n-13)-2*a(n-14)+2*a(n-15)-a(n-16)+a(n-17)+a(n-19)-2*a(n-21)+a(n-22)
Comments