A188241 Number of nondecreasing arrangements of 8 numbers in -(n+6)..(n+6) with sum zero and not more than two numbers equal.
5020, 11376, 23522, 45225, 81981, 141519, 234413, 374820, 581280, 877662, 1294252, 1868927, 2648493, 3690201, 5063359, 6851134, 9152564, 12084676, 15784822, 20413257, 26155829, 33226923, 41872667, 52374270, 65051638, 80267282, 98430368
Offset: 1
Keywords
Examples
Some solutions for n=4 .-7..-10..-10..-10..-10...-9...-9..-10...-9...-8...-9..-10...-9...-7...-8...-6 .-6..-10...-7...-5..-10...-8...-8..-10...-6...-8...-5...-6...-8...-4...-8...-5 .-3...-3...-5...-3...-3...-7...-3...-6...-1...-4...-4...-5...-1...-4...-5...-5 .-3....1...-3...-2...-2...-2...-1....1...-1...-1...-1...-2....0...-2...-1...-3 ..0....3....4....0...-1....2...-1....2....2....1....0....0....0....2....2....0 ..4....3....5....6....6....7....6....6....4....6....5....7....3....2....2....2 ..6....6....8....6...10....7....7....7....5....7....5....7....5....5....9....7 ..9...10....8....8...10...10....9...10....6....7....9....9...10....8....9...10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..175
Formula
Empirical: a(n)=3*a(n-1)-2*a(n-2)-3*a(n-4)+4*a(n-5)-3*a(n-8)+3*a(n-9)-a(n-11)-a(n-12)+3*a(n-14)-3*a(n-15)+4*a(n-18)-3*a(n-19)-2*a(n-21)+3*a(n-22)-a(n-23)
Comments