cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188249 T(n,k)=Number of arrangements of n+2 nonzero numbers x(i) in -k..k with the sum of x(i)*x(i+1) equal to zero.

Original entry on oeis.org

4, 16, 0, 36, 20, 12, 64, 52, 120, 0, 100, 144, 548, 300, 40, 144, 208, 1504, 1632, 1284, 0, 196, 436, 3292, 7092, 12692, 4132, 140, 256, 532, 6376, 16484, 58824, 51196, 16272, 0, 324, 816, 10564, 43440, 193232, 368588, 355396, 57808, 504, 400, 1072, 17040, 75080
Offset: 1

Views

Author

R. H. Hardin Mar 25 2011

Keywords

Comments

Table starts
...4.....16.......36.........64.........100.........144..........196
...0.....20.......52........144.........208.........436..........532
..12....120......548.......1504........3292........6376........10564
...0....300.....1632.......7092.......16484.......43440........75080
..40...1284....12692......58824......193232......521124......1142180
...0...4132....51196.....368588.....1399640.....4875112.....11953848
.140..16272...355396....2880240....14715004....55994544....168083116
...0..57808..1657632...20265640...123729664...591604824...2026547348
.504.223308.10858368..156028036..1247614580..6764014136..27843005992
...0.828456.54754656.1154193268.11199296500.75116513672.355600251460

Examples

			Some solutions for n=6 k=4
.-2...-3...-3...-1...-2...-1....1....2...-3...-4....3...-4...-2...-4...-4...-2
.-2...-4...-4...-4...-4...-4...-4...-4...-2...-3...-4...-3...-3...-4...-3...-4
.-3...-2...-2....4....3....2....1....1...-4....3...-2....1....3....2....1....2
.-4...-2...-1...-1....1...-1....2...-4....2...-4....1...-3...-1....2....4....4
..3....4...-4...-4...-2...-2...-1...-2...-2...-3....1....1...-2...-1....2...-3
.-2...-4....2...-3....1...-2...-2...-3....4....3....4...-3...-3....1...-3...-4
..1...-3...-3...-3....1...-2...-1....2....3....3....1....3...-2....3....3....4
.-2....4....4....3....4....2...-4....4...-2...-1...-3....3....4...-4...-2....2
		

Crossrefs

Column 1 is 4*A138364