cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188358 T(n,k)=Number of arrangements of n+1 numbers x(i) in -k..k with the sum of x(i)*x(i+1) equal to zero.

Original entry on oeis.org

5, 9, 15, 13, 45, 29, 17, 91, 117, 91, 21, 153, 257, 565, 197, 25, 231, 497, 1775, 1953, 627, 29, 325, 749, 4201, 7369, 9153, 1477, 33, 435, 1205, 8051, 22229, 49747, 37269, 4671, 37, 561, 1569, 14477, 45801, 181449, 262925, 173409, 11693, 41, 703, 2161
Offset: 1

Views

Author

R. H. Hardin Mar 28 2011

Keywords

Comments

Table starts
.....5.......9.......13........17.........21..........25..........29
....15......45.......91.......153........231.........325.........435
....29.....117......257.......497........749........1205........1569
....91.....565.....1775......4201.......8051.......14477.......22583
...197....1953.....7369.....22229......45801......100885......163745
...627....9153....49747....181449.....480363.....1171345.....2295051
..1477...37269...262925...1264985....3882729....11535493....25217201
..4671..173409..1763151..10396729...40629247...136061137...355442823
.11693..766869.10536621..81850801..383541193..1540834589..4602176797
.36487.3589357.70819767.684867741.4033546763.18592832393.65556183495

Examples

			Some solutions for n=6 k=4
.-4...-1...-4....0....3....0...-1....0...-4...-1...-1...-1...-2...-1....1...-3
..0...-2...-3...-2...-4...-4...-3...-4....0...-1...-2...-3...-2....0...-2...-1
.-4....2....3....1....3....4...-3...-1....4....0....1....1...-2....4....1....1
..4...-1...-1....1....3....4....0...-2....0....0...-3...-4....1...-4...-4....2
..4....2....2....1....1....0....1....3...-2...-3...-1...-1...-2...-4....3...-3
..3....1...-2....0...-4....1...-3...-2....0...-1....0....2....1...-4....4...-1
.-4....4...-3...-1...-4....0....3...-3...-4....4....3....1...-2....4....2....1
		

Crossrefs

Row 1 is A016813
Row 2 is A014634