This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188392 #20 May 18 2020 03:00:59 %S A188392 1,2,1,5,3,1,15,16,4,1,52,139,39,5,1,203,1750,862,81,6,1,877,29388, %T A188392 35775,4079,150,7,1,4140,624889,2406208,507549,15791,256,8,1,21147, %U A188392 16255738,238773109,127126912,5442547,52450,410,9,1,115975,504717929,32867762616 %N A188392 T(n,k) = number of (n*k) X k binary arrays with rows in nonincreasing order and n ones in every column. %H A188392 Andrew Howroyd, <a href="/A188392/b188392.txt">Table of n, a(n) for n = 1..181</a> (terms 1..69 from R. H. Hardin) %e A188392 Array begins: %e A188392 ======================================================================== %e A188392 n\k| 1 2 3 4 5 6 7 8 %e A188392 ---+-------------------------------------------------------------------- %e A188392 1 | 1 2 5 15 52 203 877 4140 %e A188392 2 | 1 3 16 139 1750 29388 624889 16255738 %e A188392 3 | 1 4 39 862 35775 2406208 238773109 32867762616 %e A188392 4 | 1 5 81 4079 507549 127126912 55643064708 38715666455777 %e A188392 5 | 1 6 150 15791 5442547 4762077620 8738543204786 %e A188392 6 | 1 7 256 52450 46757209 135029200594 %e A188392 7 | 1 8 410 154279 335279744 %e A188392 8 | 1 9 625 411180 %e A188392 9 | 1 10 915 %e A188392 ... %e A188392 All solutions for 6 X 2 %e A188392 ..1..1....1..1....1..0....1..1 %e A188392 ..1..1....1..1....1..0....1..0 %e A188392 ..1..0....1..1....1..0....1..0 %e A188392 ..0..1....0..0....0..1....0..1 %e A188392 ..0..0....0..0....0..1....0..1 %e A188392 ..0..0....0..0....0..1....0..0 %o A188392 (PARI) %o A188392 WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} %o A188392 D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)} %o A188392 T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, 1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p,n,k), [1,n]); s*q[#q-j]))} \\ _Andrew Howroyd_, Dec 12 2018 %Y A188392 Rows 1..8 are A000110, A020554, A165434, A165435, A165436, A165437, A188393, A188394. %Y A188392 Columns 3..7 are A011863(n+1), A175707, A188389, A188390, A188391. %Y A188392 Main diagonal gives A188388. %Y A188392 Cf. A188445, A219727, A330942. %K A188392 nonn,tabl %O A188392 1,2 %A A188392 _R. H. Hardin_, Mar 30 2011