This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188400 #10 Apr 07 2020 14:55:38 %S A188400 1,76,2578,44288,478711,3710272,22393101,111200600,472211360, %T A188400 1763603560,5916521021,18121655192,51328536740,135834620472, %U A188400 338676787932,801091475448,1808025242415,3912600581712,8152010122276,16411466716600,32022153082291,60720959942432,112158519503545 %N A188400 Number of (6*n) X 6 binary arrays with rows in nonincreasing order, n ones in every column and no more than 2 ones in any row. %C A188400 Number of 6 X 6 symmetric matrices with nonnegative integer entries and all row and column sums n. - _Andrew Howroyd_, Apr 07 2020 %H A188400 Andrew Howroyd, <a href="/A188400/b188400.txt">Table of n, a(n) for n = 0..50</a> %e A188400 Some solutions for 12X6 %e A188400 ..1..0..0..1..0..0....1..0..0..0..1..0....1..0..0..1..0..0....1..1..0..0..0..0 %e A188400 ..1..0..0..0..0..0....1..0..0..0..0..0....1..0..0..0..0..0....1..0..1..0..0..0 %e A188400 ..0..1..0..0..0..0....0..1..1..0..0..0....0..1..1..0..0..0....0..1..1..0..0..0 %e A188400 ..0..1..0..0..0..0....0..1..0..0..0..0....0..1..1..0..0..0....0..0..0..1..0..1 %e A188400 ..0..0..1..1..0..0....0..0..1..1..0..0....0..0..0..1..0..0....0..0..0..1..0..1 %e A188400 ..0..0..1..0..0..0....0..0..0..1..0..0....0..0..0..0..1..1....0..0..0..0..1..0 %e A188400 ..0..0..0..0..1..1....0..0..0..0..1..0....0..0..0..0..1..0....0..0..0..0..1..0 %e A188400 ..0..0..0..0..1..1....0..0..0..0..0..1....0..0..0..0..0..1....0..0..0..0..0..0 %e A188400 ..0..0..0..0..0..0....0..0..0..0..0..1....0..0..0..0..0..0....0..0..0..0..0..0 %e A188400 ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0 %e A188400 ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0 %e A188400 ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0 %Y A188400 Column 6 of A188403. %K A188400 nonn %O A188400 0,2 %A A188400 _R. H. Hardin_, Mar 30 2011 %E A188400 a(0)=1 prepended and terms a(17) and beyond from _Andrew Howroyd_, Apr 07 2020