cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188409 Number of (8*n) X n binary arrays with rows in nonincreasing order, 8 ones in every column and no more than 2 ones in any row.

This page as a plain text file.
%I A188409 #10 Apr 07 2020 15:38:38
%S A188409 1,1,9,215,13825,1865715,472211360,205617134345,144413237202513,
%T A188409 155491132440121969,246331815235550280739,555051611796729847585857,
%U A188409 1728979263188082473586904451,7267279122553798970928760164349,40366145202716102133415620482175732,290962702320861139000003963988839815695
%N A188409 Number of (8*n) X n binary arrays with rows in nonincreasing order, 8 ones in every column and no more than 2 ones in any row.
%C A188409 Number of n X n symmetric matrices with nonnegative integer entries and all row and column sums 8. - _Andrew Howroyd_, Apr 07 2020
%e A188409 All solutions for 16X2
%e A188409 ..1..1....1..1....1..1....1..1....1..1....1..1....1..1....1..0....1..1
%e A188409 ..1..1....1..1....1..1....1..0....1..1....1..1....1..1....1..0....1..1
%e A188409 ..1..1....1..1....1..1....1..0....1..1....1..0....1..1....1..0....1..1
%e A188409 ..1..1....1..1....1..1....1..0....1..1....1..0....1..1....1..0....1..0
%e A188409 ..1..1....1..1....1..1....1..0....1..1....1..0....1..0....1..0....1..0
%e A188409 ..1..0....1..1....1..1....1..0....1..1....1..0....1..0....1..0....1..0
%e A188409 ..1..0....1..0....1..1....1..0....1..1....1..0....1..0....1..0....1..0
%e A188409 ..1..0....1..0....1..0....1..0....1..1....1..0....1..0....1..0....1..0
%e A188409 ..0..1....0..1....0..1....0..1....0..0....0..1....0..1....0..1....0..1
%e A188409 ..0..1....0..1....0..0....0..1....0..0....0..1....0..1....0..1....0..1
%e A188409 ..0..1....0..0....0..0....0..1....0..0....0..1....0..1....0..1....0..1
%e A188409 ..0..0....0..0....0..0....0..1....0..0....0..1....0..1....0..1....0..1
%e A188409 ..0..0....0..0....0..0....0..1....0..0....0..1....0..0....0..1....0..1
%e A188409 ..0..0....0..0....0..0....0..1....0..0....0..1....0..0....0..1....0..0
%e A188409 ..0..0....0..0....0..0....0..1....0..0....0..0....0..0....0..1....0..0
%e A188409 ..0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..1....0..0
%Y A188409 Row 8 of A188403.
%K A188409 nonn
%O A188409 0,3
%A A188409 _R. H. Hardin_, Mar 30 2011
%E A188409 a(0)=1 prepended and terms a(9) and beyond from _Andrew Howroyd_, Apr 06 2020