cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188440 Triangle T(n,k) read by rows: number of size-k antisymmetric subsets of {1,2,...,n}.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 4, 1, 4, 4, 1, 6, 12, 8, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 14, 84, 280
Offset: 0

Views

Author

Dennis P. Walsh, Mar 31 2011

Keywords

Comments

A subset S of {1,2,...,n} is antisymmetric if x is an element of S implies n+1-x is not an element of S. In other words, the sum of any two elements of S does not equal n+1. For example, {1,2,5} is an antisymmetric subset of {1,2,3,4,5,6,7}. If n is odd, (n+1)/2 cannot be an element of an antisymmetric subset of {1,2,...,n}. (Note that for n=0, we define {1,...,n} to be the empty set, and thus T(0,0)=1 since the empty set is vacuously antisymmetric.)
We note, for example, that T(100,k) provides the number of possible size-k committees of the U.S. Senate in which no two members are from the same state.
Triangle, read by rows, A013609 rows repeated. - Philippe Deléham, Apr 09 2012
Triangle, with zeros omitted, given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 09 2012

Examples

			Triangle T(n,k) initial values 0 <= k <= floor(n/2), n=0..13:
  1
  1
  1   2
  1   2
  1   4   4
  1   4   4
  1   6  12   8
  1   6  12   8
  1   8  24  32  16
  1   8  24  32  16
  1  10  40  80  80  32
  1  10  40  80  80  32
  1  12  60 160 240 192  64
  1  12  60 160 240 192  64
  ...
For n=7 and k=2, T(7,2)=12 since there are 12 antisymmetric size-2 subsets of {1,2,...,7}:
  {1,2}, {1,3}, {1,5}, {1,6}, {2,3}, {2,5},
  {2,7}, {3,6}, {3,7}, {5,6}, {5,7}, and {6,7}.
(1, 0, -1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins:
  1
  1   0
  1   2   0
  1   2   0   0
  1   4   4   0   0
  1   4   4   0   0   0
  1   6  12   8   0   0   0
  1   6  12   8   0   0   0   0
  1   8  24  32  16   0   0   0   0
  1   8  24  32  16   0   0   0   0   0
  1  10  40  80  80  32   0   0   0   0   0
  1  10  40  80  80  32   0   0   0   0   0   0
  1  12  60 160 240 192  64   0   0   0   0   0   0
  1  12  60 160 240 192  64   0   0   0   0   0   0   0
- _Philippe Deléham_, Apr 09 2012
		

Crossrefs

Cf. A108411, row sums of triangle T(n,k).

Programs

  • Maple
    seq(seq(binomial(floor(n/2),k)*2^k,k=0..floor(n/2)),n=0..22);
  • Mathematica
    Table[ CoefficientList[(1 + 2*x)^n, x] , {n, 0, 7}, {2}] // Flatten (* Jean-François Alcover, Aug 19 2013, after Philippe Deléham *)

Formula

T(n,k) = 2^k*C(floor(n/2),k) where C(*,*) denotes a binomial coefficient.
Sum(T(n,k),k=0..floor(n/2)) = 3^floor(n/2) = A108411(n).
G.f. for columns(k fixed):(2t^2)^k/((1-t)*(1-t^2)^k).
T(n,k) = A152198(n,k)*2^k. - Philippe Deléham, Apr 09 2012
G.f.: (1+x)/(1-x^2-2*y*x^2). - Philippe Deléham, Apr 09 2012
T(n,k) = T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n.- Philippe Deléham, Apr 09 2012