A188440 Triangle T(n,k) read by rows: number of size-k antisymmetric subsets of {1,2,...,n}.
1, 1, 1, 2, 1, 2, 1, 4, 4, 1, 4, 4, 1, 6, 12, 8, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 14, 84, 280
Offset: 0
Examples
Triangle T(n,k) initial values 0 <= k <= floor(n/2), n=0..13: 1 1 1 2 1 2 1 4 4 1 4 4 1 6 12 8 1 6 12 8 1 8 24 32 16 1 8 24 32 16 1 10 40 80 80 32 1 10 40 80 80 32 1 12 60 160 240 192 64 1 12 60 160 240 192 64 ... For n=7 and k=2, T(7,2)=12 since there are 12 antisymmetric size-2 subsets of {1,2,...,7}: {1,2}, {1,3}, {1,5}, {1,6}, {2,3}, {2,5}, {2,7}, {3,6}, {3,7}, {5,6}, {5,7}, and {6,7}. (1, 0, -1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins: 1 1 0 1 2 0 1 2 0 0 1 4 4 0 0 1 4 4 0 0 0 1 6 12 8 0 0 0 1 6 12 8 0 0 0 0 1 8 24 32 16 0 0 0 0 1 8 24 32 16 0 0 0 0 0 1 10 40 80 80 32 0 0 0 0 0 1 10 40 80 80 32 0 0 0 0 0 0 1 12 60 160 240 192 64 0 0 0 0 0 0 1 12 60 160 240 192 64 0 0 0 0 0 0 0 - _Philippe Deléham_, Apr 09 2012
Links
- T. D. Noe, Rows n = 0..100, flattened
- Dennis Walsh, Notes on antisymmetric subsets of {1,2,...,n}
Programs
-
Maple
seq(seq(binomial(floor(n/2),k)*2^k,k=0..floor(n/2)),n=0..22);
-
Mathematica
Table[ CoefficientList[(1 + 2*x)^n, x] , {n, 0, 7}, {2}] // Flatten (* Jean-François Alcover, Aug 19 2013, after Philippe Deléham *)
Formula
T(n,k) = 2^k*C(floor(n/2),k) where C(*,*) denotes a binomial coefficient.
Sum(T(n,k),k=0..floor(n/2)) = 3^floor(n/2) = A108411(n).
G.f. for columns(k fixed):(2t^2)^k/((1-t)*(1-t^2)^k).
T(n,k) = A152198(n,k)*2^k. - Philippe Deléham, Apr 09 2012
G.f.: (1+x)/(1-x^2-2*y*x^2). - Philippe Deléham, Apr 09 2012
T(n,k) = T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n.- Philippe Deléham, Apr 09 2012
Comments