cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188502 Number of nX3 binary arrays without the pattern 0 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

7, 49, 229, 971, 4351, 20124, 92597, 423074, 1932355, 8836938, 40424590, 184890099, 845559045, 3867059514, 17685848557, 80885615913, 369926354240, 1691838530486, 7737537171921, 35387239493020, 161841764228828, 740175150497968
Offset: 1

Views

Author

R. H. Hardin Apr 02 2011

Keywords

Comments

Column 3 of A188508

Examples

			Some solutions for 4X3
..1..1..1....1..0..1....1..0..1....1..1..0....1..1..1....1..0..0....1..1..1
..1..0..0....1..0..1....0..0..1....0..0..0....1..1..1....0..0..0....0..0..1
..1..0..0....1..0..1....0..1..1....0..0..0....0..0..0....1..0..0....0..0..1
..1..0..1....1..1..1....0..1..1....1..0..0....0..0..0....1..0..0....1..1..0
		

Formula

Empirical: a(n)=7*a(n-1)-21*a(n-2)+59*a(n-3)-82*a(n-4)+97*a(n-5)-14*a(n-6)-148*a(n-7)+166*a(n-8)-153*a(n-9)-158*a(n-10)+340*a(n-11)+164*a(n-12)-296*a(n-13)-87*a(n-14)+115*a(n-15)+13*a(n-16)-a(n-17)+6*a(n-18)-5*a(n-19)-6*a(n-20)+4*a(n-21)+a(n-23)