A188502 Number of nX3 binary arrays without the pattern 0 1 0 diagonally, vertically or horizontally.
7, 49, 229, 971, 4351, 20124, 92597, 423074, 1932355, 8836938, 40424590, 184890099, 845559045, 3867059514, 17685848557, 80885615913, 369926354240, 1691838530486, 7737537171921, 35387239493020, 161841764228828, 740175150497968
Offset: 1
Keywords
Examples
Some solutions for 4X3 ..1..1..1....1..0..1....1..0..1....1..1..0....1..1..1....1..0..0....1..1..1 ..1..0..0....1..0..1....0..0..1....0..0..0....1..1..1....0..0..0....0..0..1 ..1..0..0....1..0..1....0..1..1....0..0..0....0..0..0....1..0..0....0..0..1 ..1..0..1....1..1..1....0..1..1....1..0..0....0..0..0....1..0..0....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n)=7*a(n-1)-21*a(n-2)+59*a(n-3)-82*a(n-4)+97*a(n-5)-14*a(n-6)-148*a(n-7)+166*a(n-8)-153*a(n-9)-158*a(n-10)+340*a(n-11)+164*a(n-12)-296*a(n-13)-87*a(n-14)+115*a(n-15)+13*a(n-16)-a(n-17)+6*a(n-18)-5*a(n-19)-6*a(n-20)+4*a(n-21)+a(n-23)
Comments