This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188513 #14 Oct 20 2024 00:27:57 %S A188513 1,1,1,3,3,1,9,11,5,1,29,40,23,7,1,97,147,99,39,9,1,333,544,413,194, %T A188513 59,11,1,1165,2025,1691,907,333,83,13,1,4135,7575,6842,4078,1725,524, %U A188513 111,15,1,14845,28455,27464,17856,8453,2979,775,143,17,1,53791,107277,109631,76718,39851,15804,4797,1094,179,19,1 %N A188513 Riordan matrix (1/(x+sqrt(1-4x)),(1-sqrt(1-4x))/(2(x+sqrt(1-4x)))). %C A188513 First column = sequence A081696 %C A188513 Row sums = sequence A101850 %F A188513 T(n,k) = [x^n] ((1-sqrt(1-4*x))/(2*(x+sqrt(1-4*x))))^k/(x+sqrt(1-4*x)). %F A188513 T(n,k) = [x^(n-k)] (1-2*x)/((1-x)^(n+1)*(1-x-x^2)^(k+1)). %F A188513 T(n,k) = sum(binomial(i+k,k)*binomial(2*n-i,n+k+i)*(2*k+3*i+1)/(n+k+i+1), i=0..floor((n-k)/2)). %e A188513 Triangle begins: %e A188513 1 %e A188513 1, 1 %e A188513 3, 3, 1 %e A188513 9, 11, 5, 1 %e A188513 29, 40, 23, 7, 1 %e A188513 97, 147, 99, 39, 9, 1 %e A188513 333, 544, 413, 194, 59, 11, 1 %e A188513 1165, 2025, 1691, 907, 333, 83, 13, 1 %e A188513 4135, 7575, 6842, 4078, 1725, 524, 111, 15, 1 %t A188513 Flatten[Table[Sum[Binomial[i+k,k]Binomial[2n-i,n+k+i](2k+3i+1)/(n+k+i+1),{i,0,Floor[(n-k)/2]}],{n,0,10},{k,0,n}]] %o A188513 (Maxima) create_list(sum(binomial(i+k,k)*binomial(2*n-i,n+k+i)*(2*k+3*i+1)/(n+k+i+1),i,0,floor((n-k)/2)),n,0,10,k,0,n); %Y A188513 Cf. A081696, A101850. %K A188513 nonn,easy,tabl %O A188513 0,4 %A A188513 _Emanuele Munarini_, Apr 02 2011