cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188517 Number of nX3 binary arrays without the pattern 1 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

7, 49, 229, 1016, 4143, 16438, 63575, 242843, 918833, 3457086, 12955090, 48421778, 180653858, 673156166, 2506152176, 9324771027, 34680539851, 128945324565, 479330913137, 1781567026168, 6621013690288, 24604558144729, 91429145674242
Offset: 1

Views

Author

R. H. Hardin Apr 02 2011

Keywords

Comments

Column 3 of A188523

Examples

			Some solutions for 4X3
..0..0..0....1..0..1....1..0..1....0..1..0....1..0..0....0..0..1....0..0..1
..0..1..0....0..1..0....0..0..0....0..0..0....0..1..0....0..1..0....0..1..0
..0..0..0....1..1..1....0..1..1....0..1..0....0..0..1....1..0..0....0..0..1
..0..1..0....0..1..1....1..0..1....0..0..0....0..0..1....1..1..1....0..1..1
		

Formula

Empirical: a(n)=7*a(n-1)-5*a(n-2)-54*a(n-3)+79*a(n-4)+173*a(n-5)-294*a(n-6)-313*a(n-7)+521*a(n-8)+357*a(n-9)-501*a(n-10)-255*a(n-11)+272*a(n-12)+106*a(n-13)-84*a(n-14)-23*a(n-15)+14*a(n-16)+2*a(n-17)-a(n-18).
Empirical: G.f. -x*(-7 +79*x^2 -36*x^3 -269*x^4 +199*x^5 +422*x^6 -446*x^7 -410*x^8 +468*x^9 +269*x^10 -264*x^11 -109*x^12 +84*x^13 +23*x^14 -14*x^15 -2*x^16 +x^17) / ( (x-1) *(x^2-3*x+1) *(x^2-x-1) *(x^3-2*x^2-x+1) *(x^4+x^3-3*x^2-3*x+1) *(1+x)^2 *(x^2+x-1)^2 ). - R. J. Mathar, Dec 21 2011