cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A188516 Number of nX2 binary arrays without the pattern 1 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

4, 16, 49, 144, 400, 1089, 2916, 7744, 20449, 53824, 141376, 370881, 972196, 2547216, 6671889, 17472400, 45751696, 119793025, 313644100, 821166336, 2149898689, 5628600576, 14736017664, 38579637889, 101003196100, 264430435984
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2011

Keywords

Comments

Column 2 of A188523

Examples

			Some solutions for 3X2
..0..1....0..1....0..0....0..0....1..0....0..1....1..0....0..1....0..0....0..1
..0..0....0..0....0..0....0..1....1..1....1..0....0..1....0..1....1..0....1..0
..1..1....0..0....0..1....1..0....1..1....0..0....1..0....1..1....0..0....0..1
		

Formula

Empirical: a(n)=4*a(n-1)-2*a(n-2)-6*a(n-3)+4*a(n-4)+2*a(n-5)-a(n-6).
Conjecture: a(n) = (F(n+3) - 1)^2, where F = A000045 (Fibonacci numbers). - Clark Kimberling, Jun 21 2016
Assuming the conjecture, define b(1) = 1 and b(n) = a(n-1) for n > 1. Then b(n) = Sum{F(i,j): (i=n and 1<=j<=n) or (j=n and 1<=i<=n)}, where F is the Fibonacci fusion array, A202453. - Clark Kimberling, Jun 21 2016
G.f. for (b(n)): -x*(-1+x^3-2*x^2) / ( (x-1)*(1+x)*(x^2-3*x+1)*(x^2+x-1) ). - R. J. Mathar, Dec 20 2011
b(n) = -2*(-1)^n/5 - 2*Fibonacci(n+2) + Lucas(2*n+4)/5 + 1. - Ehren Metcalfe, Mar 26 2016

A188517 Number of nX3 binary arrays without the pattern 1 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

7, 49, 229, 1016, 4143, 16438, 63575, 242843, 918833, 3457086, 12955090, 48421778, 180653858, 673156166, 2506152176, 9324771027, 34680539851, 128945324565, 479330913137, 1781567026168, 6621013690288, 24604558144729, 91429145674242
Offset: 1

Views

Author

R. H. Hardin Apr 02 2011

Keywords

Comments

Column 3 of A188523

Examples

			Some solutions for 4X3
..0..0..0....1..0..1....1..0..1....0..1..0....1..0..0....0..0..1....0..0..1
..0..1..0....0..1..0....0..0..0....0..0..0....0..1..0....0..1..0....0..1..0
..0..0..0....1..1..1....0..1..1....0..1..0....0..0..1....1..0..0....0..0..1
..0..1..0....0..1..1....1..0..1....0..0..0....0..0..1....1..1..1....0..1..1
		

Formula

Empirical: a(n)=7*a(n-1)-5*a(n-2)-54*a(n-3)+79*a(n-4)+173*a(n-5)-294*a(n-6)-313*a(n-7)+521*a(n-8)+357*a(n-9)-501*a(n-10)-255*a(n-11)+272*a(n-12)+106*a(n-13)-84*a(n-14)-23*a(n-15)+14*a(n-16)+2*a(n-17)-a(n-18).
Empirical: G.f. -x*(-7 +79*x^2 -36*x^3 -269*x^4 +199*x^5 +422*x^6 -446*x^7 -410*x^8 +468*x^9 +269*x^10 -264*x^11 -109*x^12 +84*x^13 +23*x^14 -14*x^15 -2*x^16 +x^17) / ( (x-1) *(x^2-3*x+1) *(x^2-x-1) *(x^3-2*x^2-x+1) *(x^4+x^3-3*x^2-3*x+1) *(1+x)^2 *(x^2+x-1)^2 ). - R. J. Mathar, Dec 21 2011

A188518 Number of nX4 binary arrays without the pattern 1 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

12, 144, 1016, 6760, 40230, 231400, 1286120, 7034258, 37987114, 203649331, 1086048101, 5772562367, 30611227680, 162077331288, 857234934742, 4530655310672, 23933312899024, 126384275780253, 667233389909168
Offset: 1

Views

Author

R. H. Hardin Apr 02 2011

Keywords

Comments

Column 4 of A188523

Examples

			Some solutions for 3X4
..1..0..0..0....0..1..0..1....1..1..1..1....0..1..1..1....0..1..0..1
..0..0..0..0....0..0..1..1....0..0..1..1....1..0..0..1....0..0..0..0
..1..0..0..0....1..1..1..1....0..1..1..1....0..0..1..1....1..0..1..1
		

Formula

Empirical: a(n)=9*a(n-1)+7*a(n-2)-232*a(n-3)+152*a(n-4)+2702*a(n-5)-2562*a(n-6)-18864*a(n-7)+17263*a(n-8)+87842*a(n-9)-66612*a(n-10)-286363*a(n-11)+164607*a(n-12)+667732*a(n-13)-277177*a(n-14)-1122752*a(n-15)+334441*a(n-16)+1363415*a(n-17)-302523*a(n-18)-1192472*a(n-19)+209490*a(n-20)+745650*a(n-21)-106632*a(n-22)-328873*a(n-23)+33984*a(n-24)+100190*a(n-25)-2647*a(n-26)-20521*a(n-27)-2920*a(n-28)+2784*a(n-29)+1384*a(n-30)-267*a(n-31)-280*a(n-32)+21*a(n-33)+27*a(n-34)-a(n-35)-a(n-36)

A188519 Number of nX5 binary arrays without the pattern 1 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

20, 400, 4143, 40230, 342240, 2800798, 22015314, 169875850, 1291198707, 9730141740, 72859323174, 543367409130, 4040626627139, 29988912453443, 222268109960222, 1645817547627269, 12178540896840119, 90075084742836021
Offset: 1

Views

Author

R. H. Hardin Apr 02 2011

Keywords

Comments

Column 5 of A188523

Examples

			Some solutions for 3X5
..0..1..0..0..1....0..1..0..1..1....1..0..1..0..1....0..1..0..1..0
..1..0..0..0..1....0..0..0..0..1....0..0..0..0..0....0..1..0..0..0
..0..0..0..0..1....0..0..1..1..1....1..0..1..1..1....1..1..1..1..1
		

Formula

Empirical: a(n)=14*a(n-1)+12*a(n-2)-869*a(n-3)+1315*a(n-4)+25339*a(n-5)-55704*a(n-6)-466536*a(n-7)+1104069*a(n-8)+6123144*a(n-9)-13871452*a(n-10)-60905308*a(n-11)+122840856*a(n-12)+473902055*a(n-13)-810705818*a(n-14)-2932504534*a(n-15)+4131855019*a(n-16)+14571427067*a(n-17)-16696287227*a(n-18)-58561243631*a(n-19)+54702515236*a(n-20)+191588731358*a(n-21)-148452953569*a(n-22)-513291220886*a(n-23)+340859242431*a(n-24)+1131765472611*a(n-25)-675017422947*a(n-26)-2060462245934*a(n-27)+1167999276063*a(n-28)+3099080394556*a(n-29)-1770250494282*a(n-30)-3837665043366*a(n-31)+2329323672403*a(n-32)+3875748540760*a(n-33)-2614929879690*a(n-34)-3130743870873*a(n-35)+2448428133991*a(n-36)+1944185589624*a(n-37)-1860043238075*a(n-38)-842724478681*a(n-39)+1103495474142*a(n-40)+167817486381*a(n-41)-476717517573*a(n-42)+78582422599*a(n-43)+121853141835*a(n-44)-91254459222*a(n-45)+5768288867*a(n-46)+46035625299*a(n-47)-22656845337*a(n-48)-15248405057*a(n-49)+12059870046*a(n-50)+3756383370*a(n-51)-3920799304*a(n-52)-833927678*a(n-53)+900771854*a(n-54)+215654330*a(n-55)-155066412*a(n-56)-61762189*a(n-57)+21214719*a(n-58)+15278566*a(n-59)-2522154*a(n-60)-2885183*a(n-61)+283792*a(n-62)+399816*a(n-63)-29377*a(n-64)-39473*a(n-65)+2394*a(n-66)+2636*a(n-67)-125*a(n-68)-107*a(n-69)+3*a(n-70)+2*a(n-71)

A188520 Number of nX6 binary arrays without the pattern 1 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

33, 1089, 16438, 231400, 2800798, 32470385, 359696109, 3903047802, 41642655120, 440047202716, 4617244898772, 48229127405889, 502163657044635, 5217313950984361, 54124162283409093, 560894846117339319
Offset: 1

Views

Author

R. H. Hardin Apr 02 2011

Keywords

Comments

Column 6 of A188523

Examples

			Some solutions for 3X6
..0..0..0..1..0..0....0..0..1..0..0..1....1..0..0..1..0..1....0..0..0..0..0..0
..1..0..1..0..0..1....0..0..1..1..1..1....1..0..0..0..0..1....0..1..0..0..1..1
..1..0..1..0..1..0....0..0..1..1..1..1....1..1..1..1..1..1....0..1..0..1..0..0
		

A188521 Number of nX7 binary arrays without the pattern 1 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

54, 2916, 63575, 1286120, 22015314, 359696109, 5593606875, 85072486586, 1270511986433, 18779814902475, 275479123825628, 4021463733992753, 58503148106709186, 849117447746208056, 12303966393066654445
Offset: 1

Views

Author

R. H. Hardin Apr 02 2011

Keywords

Comments

Column 7 of A188523

Examples

			Some solutions for 3X7
..0..0..0..0..1..1..1....1..0..0..0..0..1..1....1..0..0..0..0..1..0
..0..0..1..0..0..1..0....1..0..1..0..1..1..1....0..0..0..0..0..0..1
..1..1..1..1..1..1..1....1..0..1..1..1..1..1....0..0..0..1..0..1..1
		

A188522 Number of nX8 binary arrays without the pattern 1 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

88, 7744, 242843, 7034258, 169875850, 3903047802, 85072486586, 1811059364020, 37821597590709, 781325885220314, 16012231196353370, 326488652600242878, 6633121196128165894, 134436194716739170904, 2720029462045283755053
Offset: 1

Views

Author

R. H. Hardin Apr 02 2011

Keywords

Comments

Column 8 of A188523

Examples

			Some solutions for 3X8
..0..0..1..0..0..0..0..0....0..0..1..0..1..0..0..1....0..0..0..0..1..0..1..0
..0..0..1..0..0..1..0..1....0..0..0..0..0..0..1..0....0..0..0..0..0..0..0..0
..1..0..1..0..0..1..1..1....1..0..1..0..1..0..1..1....0..0..0..1..1..1..1..1
		

A188515 Number of n X n binary arrays without the pattern 1 1 0 diagonally, vertically or horizontally.

Original entry on oeis.org

2, 16, 229, 6760, 342240, 32470385, 5593606875, 1811059364020, 1103649329789000, 1283030748540574429, 2858394905740312536937, 12271770983630246007920447, 101822638806356395388304091003, 1636793382556126237888634491914956
Offset: 1

Views

Author

R. H. Hardin Apr 02 2011

Keywords

Comments

Diagonal of A188523

Examples

			Some solutions for 3X3
..0..1..0....0..0..1....1..1..1....0..0..0....0..0..0....1..0..1....1..1..1
..1..1..1....0..1..0....0..0..1....0..0..0....0..0..0....0..1..0....0..0..1
..0..1..1....1..0..1....0..0..1....0..0..1....0..1..1....1..1..1....1..0..1
		
Showing 1-8 of 8 results.