This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188536 #31 Jan 20 2021 19:13:53 %S A188536 797,1077,1651,1691,1895,2059,2817,3263,4193,4615,4803,4987,5453,5501, %T A188536 5745,5993,6427,6761,7149,7547,7797,7943,8489,8705,9439,9747,9899, %U A188536 10201,10347,10661,11059,12367,12591,12815,13095,13861,14359,14693 %N A188536 Potential magic constants of 7 X 7 magic squares composed of consecutive primes. %C A188536 For a 7 X 7 magic square composed of 49 consecutive primes, it is necessary that the sum of these primes is a multiple of 7. %C A188536 This sequence consists of integers equal to the sum of 49 consecutive primes divided by 7. It is not known whether each such set of consecutive primes can be arranged into a 7 X 7 magic square but it looks plausible. %H A188536 Alois P. Heinz, <a href="/A188536/b188536.txt">Table of n, a(n) for n = 1..10000</a> %H A188536 Natalia Makarova, <a href="http://www.natalimak1.narod.ru/mk7prime.htm">Order 7 magic squares, which consist of sequential primes</a> (in Russian) %e A188536 a(2) = 1077: %e A188536 [ 281 167 101 43 191 37 257 %e A188536 173 79 227 71 179 211 137 %e A188536 157 109 139 277 47 251 97 %e A188536 199 151 41 89 223 193 181 %e A188536 83 197 239 229 107 163 59 %e A188536 53 103 263 127 269 149 113 %e A188536 131 271 67 241 61 73 233 ] %e A188536 . %e A188536 a(3) = 1651: %e A188536 [ 239 349 359 113 127 271 193 %e A188536 109 277 311 293 191 307 163 %e A188536 149 223 281 379 283 197 139 %e A188536 199 233 251 211 373 157 227 %e A188536 367 331 179 137 151 173 313 %e A188536 241 131 103 337 257 229 353 %e A188536 347 107 167 181 269 317 263 ] %p A188536 s:= proc(n) option remember; %p A188536 `if`(n=1, add(ithprime(i), i=1..49), %p A188536 ithprime(n+48) -ithprime(n-1) +s(n-1)) %p A188536 end: %p A188536 a:= proc(n) option remember; local k, m; a(n-1); %p A188536 for k from 1+b(n-1) while irem(s(k),7,'m')<>0 do od; %p A188536 b(n):= k; m %p A188536 end: %p A188536 a(0):=0: b(0):=0: %p A188536 seq(a(n), n=1..50); # _Alois P. Heinz_, Apr 07 2011 %t A188536 Total[#]/7&/@Select[Partition[Prime[Range[400]],49,1], Divisible[ Total[ #],7]&] (* _Harvey P. Dale_, Jan 03 2012 *) %Y A188536 Cf. A173981, A176571, A177434. %K A188536 nonn %O A188536 1,1 %A A188536 _Natalia Makarova_, Apr 03 2011 %E A188536 Edited by _Max Alekseyev_, Jun 18 2011