cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188545 Fusible numbers.

This page as a plain text file.
%I A188545 #49 Aug 28 2021 09:54:48
%S A188545 1,3,10
%N A188545 Fusible numbers.
%C A188545 Given irregular one minute fuses, the shortest amount of time that can be measured over n minutes is time(n) = n + 1/2^(fuse(n)) minutes. For example, fuse(1)=3, for 9/8 = 1 + 1/(2^fuse(1)). Over 2 minutes, time(2) = 2 + 1/(2^fuse(2)) = 2049/1024 minutes. The value for fuse(3) is larger than 2↑↑↑↑↑↑↑↑↑16, in Knuth's up-arrow notation. - _Ed Pegg Jr_, Apr 03 2011; edited by _Junyan Xu_, Jan 04 2012
%H A188545 Jeff Erickson, <a href="http://www.mathpuzzle.com/fusible.pdf">Fusible Numbers</a>, 2010. (Caution: some claims from these slides later turned out to be incorrect.)
%H A188545 Jeff Erickson, Gabriel Nivasch, Junyan Xu, <a href="https://doi.org/10.1109/LICS52264.2021.9470703">Fusible numbers and Peano Arithmetic</a>, 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS); arXiv:<a href="https://arxiv.org/abs/2003.14342">2003.14342</a> [cs.LO], 2020.
%H A188545 Ed Pegg Jr, <a href="http://www.youtube.com/watch?v=IDEXASbtknw">YouTube: The Fuse Problem</a>.
%H A188545 Junyan Xu, <a href="https://arxiv.org/abs/1202.5614">Survey on Fusible Numbers</a>, arXiv:1202.5614 [math.CO], 2012.
%Y A188545 Cf. A283075, A287012.
%K A188545 nonn,hard,bref
%O A188545 0,2
%A A188545 _Ed Pegg Jr_, Apr 03 2011