cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A067399 Number of divisors of n in OR-numbral arithmetic.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 3, 4, 2, 4, 2, 6, 2, 6, 5, 5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8, 6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14, 7, 2, 4, 2, 6, 2, 4, 2, 8, 3, 4, 2, 6, 2, 4, 2, 10, 2, 4, 2, 9, 5, 4, 2, 8, 2, 8, 4, 6, 2, 8, 6, 12, 2, 4, 4, 6
Offset: 1

Views

Author

Jens Voß, Jan 23 2002

Keywords

Comments

See A048888 for the definition of OR-numbral arithmetic. The example shows that this sequence is not multiplicative.
In other words, number of lunar divisors of n in base 2.

Examples

			a(15)=5 since [15] has the 5 OR-numbral divisors [1], [3], [5], [7] and [15].
If written as a triangle with rows of lengths 1,2,4,8,16,...:
1,
2, 2,
3, 2, 4, 3,
4, 2, 4, 2, 6, 2, 6, 5,
5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8,
6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14,
...,
the last terms in each row give A079500(n). The penultimate terms in the rows give 2*A079500(n-1). - _N. J. A. Sloane_, Mar 05 2011
		

Crossrefs

A079500 is the subsequence a(2^k-1). - N. J. A. Sloane, Feb 23 2011
See A188548 for the sum of the divisors.

A190149 Even numbers n (written in binary) such that in base-2 lunar arithmetic, the sum of the divisors of n is a number containing a 0 (in binary).

Original entry on oeis.org

10010, 100010, 100110, 110010, 1000010, 1000100, 1000110, 1001010, 1001110, 1010010, 1100010, 1100110, 1110010, 10000010, 10000100, 10000110, 10001010, 10001100, 10001110, 10010010, 10010110, 10011010, 10011110, 10100010, 10100110, 10110010, 11000010, 11000100, 11000110, 11001010, 11001110, 11010010, 11100010, 11100110, 11110010, 100000010, 100000100
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2011

Keywords

Comments

As remarked in A188548, if n is even then most of the time A188548(n) = 111...111 (that is, a number of the form 2^k-1). This sequence lists the exceptions.

Examples

			In base-2 lunar arithmetic, the divisors of 10010 are 1, 10, 1001 and 10010, whose sum is 11011.
		

Crossrefs

Cf. A188548, A067399. See A190150 and A190151 for the base-10 representation of these numbers.

A190150 A190149 converted to base 10.

Original entry on oeis.org

18, 34, 38, 50, 66, 68, 70, 74, 78, 82, 98, 102, 114, 130, 132, 134, 138, 140, 142, 146, 150, 154, 158, 162, 166, 178, 194, 196, 198, 202, 206, 210, 226, 230, 242, 258, 260, 262, 264, 266, 268, 270, 274, 276, 278, 282, 284, 286, 290, 294, 298, 302, 306, 310, 314, 318, 322, 324, 326, 330, 334, 338, 354, 358, 370, 386, 388, 390, 394, 396, 398, 402, 406
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2011

Keywords

Crossrefs

A190151 A190149 converted to base 10 and halved.

Original entry on oeis.org

9, 17, 19, 25, 33, 34, 35, 37, 39, 41, 49, 51, 57, 65, 66, 67, 69, 70, 71, 73, 75, 77, 79, 81, 83, 89, 97, 98, 99, 101, 103, 105, 113, 115, 121, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 141, 142, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 162, 163, 165, 167, 169, 177, 179, 185, 193, 194, 195, 197, 198, 199, 201, 203, 205, 207, 209, 211
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2011

Keywords

Comments

Take the even numbers n such that in base 2 lunar arithmetic, the sum of the divisors of n is not of the form 2^k-1, and divide them (in ordinary arithmetic) by 2 (cf. A190149, A190150)

Crossrefs

A190376 a(n) = sum (in ordinary arithmetic) of A067399(k), for k from 2^n to 2^(n+1)-1.

Original entry on oeis.org

1, 4, 12, 31, 75, 175, 393, 864, 1868, 3978, 8394
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2011

Keywords

Comments

I was hoping this would turn out to be a known sequence, in which case we would learn something about the average values of A067399.

Crossrefs

Programs

  • Maple
    read("transforms");
    numbralADD := proc(a,b) option remember; ORnos(a,b) ; end proc:
    numbralMUL := proc(a,b) option remember; local p,bshf,s ; p := 0 ; bshf := b ; for s from 0 do if bshf mod 2 <> 0 then p := numbralADD(p, 2^s*a ) ; end if; bshf := floor(bshf/2) ; if bshf = 0 then return p; end if; end do; end proc:
    isnumbralDiv := proc(n,d) option remember; for e from 0 do if numbralMUL(e,d) = n then return true; elif numbralMUL(e,d) > 2*n then return false; end if; end do: end proc:
    numbralDivisors := proc(n) option remember; local d,i; d := {} ; for i from 1 to n do if isnumbralDiv(n,i) then d := d union {i} ; end if; end do: d ; end proc:
    A067399 := proc(n) nops(numbralDivisors(n)) ; end proc:
    A190376 := proc(n) add(A067399(k),k=2^n..2^(n+1)-1) ; end proc: # R. J. Mathar, May 30 2011

A190632 In base 3 lunar arithmetic, the lunar sum of the lunar divisors of n.

Original entry on oeis.org

2, 2, 22, 22, 12, 22, 22, 22, 222, 202, 102, 222, 222, 112, 122, 122, 122, 222, 202, 202, 222, 222, 212, 222, 222, 222, 2222, 2002, 1002, 2222, 2022, 1012, 1122, 1022, 1022, 2222, 2202, 1102, 2222, 2222, 1112, 1122, 1122, 1122, 1222, 1202, 1202, 1222, 1222, 1212, 1222, 1222, 1222, 2222, 2002, 2002, 2222, 2012, 2012, 2222, 2022, 2022, 2222, 2102, 2102, 2222, 2222, 2112, 2222, 2222, 2122, 2222, 2202, 2202, 2222, 2222, 2212, 2222, 2222, 2222
Offset: 1

Views

Author

N. J. A. Sloane, May 14 2011

Keywords

Crossrefs

Showing 1-6 of 6 results.