This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188554 #50 Feb 10 2024 20:45:38 %S A188554 1,4,7,12,20,32,49,72,102,140,187,244,312,392,485,592,714,852,1007, %T A188554 1180,1372,1584,1817,2072,2350,2652,2979,3332,3712,4120,4557,5024, %U A188554 5522,6052,6615,7212,7844,8512,9217,9960,10742,11564,12427,13332,14280,15272,16309 %N A188554 Number of 3 X n binary arrays without the pattern 0 1 diagonally, vertically, antidiagonally or horizontally. %C A188554 a(n) is the number of words of length n, x(1)x(2)...x(n), on the alphabet {0,1,2,3} such that, for i=2,...,n, x(i)=either x(i-1) or x(i-1)-1. %C A188554 For the bijection between arrays and words, notice that the i-th column consists of 1's and then 0's, and there are x(i)=0 to 3 1's. - _Miquel A. Fiol_, Feb 06 2024 %H A188554 Alois P. Heinz, <a href="/A188554/b188554.txt">Table of n, a(n) for n = 0..10000</a> (terms n = 1..200 from R. H. Hardin) %F A188554 Proved (for the number of sequences): a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (From this, the formulas below follow.) - _Miquel A. Fiol_, Feb 06 2024 %F A188554 a(n) = (1/6)*n^3 + (11/6)*n + 2 for n>=1. %F A188554 G.f.: -(x^4 - 4*x^3 + 3*x^2 - 1)/(x - 1)^4. - _Colin Barker_, Mar 18 2012 %e A188554 Some solutions for 3 X 3: %e A188554 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 %e A188554 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 %e A188554 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 %e A188554 For n=3, the a(3)=12 solutions are 000, 100, 110, 210, 111, 211, 221, 321, 222, 322, 332, 333. Those corresponding to the above arrays are 110, 221, 322, 222, 332, 000, 333 (as mentioned, consider the sums of the columns of each array). - _Miquel A. Fiol_, Feb 06 2024 %Y A188554 Row 3 of A188553. %K A188554 nonn,easy %O A188554 0,2 %A A188554 _R. H. Hardin_, Apr 04 2011 %E A188554 a(0)=1 prepended by _Alois P. Heinz_, Feb 10 2024