cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188556 Number of 5 X n binary arrays without the pattern 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

6, 11, 20, 36, 64, 112, 192, 321, 522, 825, 1268, 1898, 2772, 3958, 5536, 7599, 10254, 13623, 17844, 23072, 29480, 37260, 46624, 57805, 71058, 86661, 104916, 126150, 150716, 178994, 211392, 248347, 290326, 337827, 391380, 451548, 518928, 594152
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2011

Keywords

Comments

Row 5 of A188553.

Examples

			Some solutions for 5 X 3:
..1..1..0....1..1..1....1..1..1....0..0..0....1..1..1....1..1..1....1..1..1
..0..0..0....1..1..1....0..0..0....0..0..0....1..1..0....1..1..1....1..1..1
..0..0..0....1..1..1....0..0..0....0..0..0....1..0..0....1..1..1....1..1..1
..0..0..0....1..1..0....0..0..0....0..0..0....0..0..0....1..1..0....1..1..1
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
		

Crossrefs

Cf. A188553.

Formula

Empirical: a(n) = (1/120)*n^5 - (1/24)*n^4 + (3/8)*n^3 + (1/24)*n^2 + (157/60)*n + 3.
Conjectures from Colin Barker, Apr 27 2018: (Start)
G.f.: x*(6 - 25*x + 44*x^2 - 39*x^3 + 18*x^4 - 3*x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)