A188596 Decimal expansion of Product_{primes p} (1-1/p)^(-2)*(1-(2+A102283(p))/p).
1, 5, 2, 1, 7, 3, 1, 5, 3, 5, 0, 7, 5, 7, 0, 5, 8, 1, 8, 8, 4, 1, 9, 5, 9, 4, 3, 4, 2, 9, 1, 3, 1, 1, 6, 9, 4, 0, 8, 0, 8, 0, 2, 7, 9, 5, 9, 4, 5, 4, 5, 0, 8, 6, 0, 5, 0, 8, 1, 5, 7, 9, 1, 8, 4, 5, 8, 1, 7, 3, 8, 5, 1, 3, 5, 6, 8, 2, 0, 3, 3, 0, 1, 0, 8, 1, 1, 4, 6, 5, 9, 5, 6, 5, 6, 4, 5, 4, 2, 7, 8, 7, 6, 4, 5
Offset: 1
Examples
Equals 1.5217315350757058188419... = 0.92003856361849186... / A073010 .
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 86.
Links
- Paul T. Bateman and Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363-367, constant C.
- H. Davenport and A. Schinzel, A note on certain arithmetical constants, Illinois Math. J. 10 (2) (1966), 181-185.
- R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015.
Crossrefs
Cf. A053182.
Programs
-
Maple
a073010 := evalf(Pi/3/sqrt(3)) ; Cm3n0s2 := 1-1/(3-1)^2 ; Cm3n1s3 := 0.867512181712394919089076584762888869720269526863 ; Zm3n2s2 := 1.4140643908921476375655018190798293799076950693931 ; Cm3n0s2*Cm3n1s3*Zm3n2s2/a073010 ;
-
Mathematica
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}]; Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]); Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[3^(5/2)*Zs[3, 1, 3]*Z[3, 2, 2]/(4*Pi), digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)
Extensions
More terms from Vaclav Kotesovec, Jan 16 2021
Comments