cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188596 Decimal expansion of Product_{primes p} (1-1/p)^(-2)*(1-(2+A102283(p))/p).

Original entry on oeis.org

1, 5, 2, 1, 7, 3, 1, 5, 3, 5, 0, 7, 5, 7, 0, 5, 8, 1, 8, 8, 4, 1, 9, 5, 9, 4, 3, 4, 2, 9, 1, 3, 1, 1, 6, 9, 4, 0, 8, 0, 8, 0, 2, 7, 9, 5, 9, 4, 5, 4, 5, 0, 8, 6, 0, 5, 0, 8, 1, 5, 7, 9, 1, 8, 4, 5, 8, 1, 7, 3, 8, 5, 1, 3, 5, 6, 8, 2, 0, 3, 3, 0, 1, 0, 8, 1, 1, 4, 6, 5, 9, 5, 6, 5, 6, 4, 5, 4, 2, 7, 8, 7, 6, 4, 5
Offset: 1

Views

Author

R. J. Mathar, Apr 05 2011

Keywords

Comments

This is the principal scale factor in an estimate of the number of primes p not exceeding N such that p^2+p+1 is also prime [Bateman-Horn].
A102283 in the definition plays the role of the Dirichlet character modulo 3.
After splitting the product into the three modulo-3 classes of primes, this constant turns out to be the product of four factors.
One factor as mentioned by Bateman and Horn is the inverse of A073010.
The second factor is 3/4 arising from the prime 3 which is the sole prime in the class == 0 (mod 3).
The third factor is product_{p == 1 (mod 3)} (1-(3p-1)/(p-1)^3) = 0.8675121817.. which is the constant C(m=3,n=1,s=3) of the arXiv preprint, basically the C(3) variant of A065418 reduced to the modulo class.
The final factor is product_{p == 2 (mod 3)} (1+1/(p^2-1)) = 1/product_{p == 2 (mod 3)} (1-1/p^2) = 1.41406439089214763.. which is the constant zeta(m=3,n=2,s=2) of the preprint and mentioned in A175646.

Examples

			Equals 1.5217315350757058188419... = 0.92003856361849186... / A073010 .
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 86.

Crossrefs

Cf. A053182.

Programs

  • Maple
    a073010 := evalf(Pi/3/sqrt(3)) ;
    Cm3n0s2 := 1-1/(3-1)^2 ;
    Cm3n1s3 := 0.867512181712394919089076584762888869720269526863 ;
    Zm3n2s2 := 1.4140643908921476375655018190798293799076950693931 ;
    Cm3n0s2*Cm3n1s3*Zm3n2s2/a073010 ;
  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[3^(5/2)*Zs[3, 1, 3]*Z[3, 2, 2]/(4*Pi), digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Extensions

More terms from Vaclav Kotesovec, Jan 16 2021