A188601 Number of nX3 binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.
7, 49, 211, 883, 3354, 12529, 45705, 165506, 595370, 2135861, 7647306, 27355170, 97794320, 349507418, 1248880596, 4462146126, 15941995134, 56954562018, 203473087470, 726911218475, 2596889588906, 9277358418622, 33143203071246
Offset: 1
Keywords
Examples
Some solutions for 4X3 ..0..1..1....1..0..1....0..1..0....0..0..1....0..1..0....0..1..1....1..1..1 ..0..0..0....1..0..1....1..1..1....0..0..0....0..0..0....1..0..1....0..0..0 ..1..0..0....1..0..1....0..1..1....1..1..1....0..1..1....0..1..1....1..0..0 ..1..1..1....1..1..1....1..1..1....1..1..1....0..0..0....1..0..1....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = 6*a(n-1) - 3*a(n-2) - 34*a(n-3) + 34*a(n-4) + 82*a(n-5) - 71*a(n-6) - 130*a(n-7) + 42*a(n-8) + 165*a(n-9) + 24*a(n-10) - 146*a(n-11) - 44*a(n-12) + 72*a(n-13) + 25*a(n-14) - 15*a(n-15) - 6*a(n-16)
Comments