cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A188601 Number of nX3 binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

7, 49, 211, 883, 3354, 12529, 45705, 165506, 595370, 2135861, 7647306, 27355170, 97794320, 349507418, 1248880596, 4462146126, 15941995134, 56954562018, 203473087470, 726911218475, 2596889588906, 9277358418622, 33143203071246
Offset: 1

Views

Author

R. H. Hardin Apr 05 2011

Keywords

Comments

Column 3 of A188607

Examples

			Some solutions for 4X3
..0..1..1....1..0..1....0..1..0....0..0..1....0..1..0....0..1..1....1..1..1
..0..0..0....1..0..1....1..1..1....0..0..0....0..0..0....1..0..1....0..0..0
..1..0..0....1..0..1....0..1..1....1..1..1....0..1..1....0..1..1....1..0..0
..1..1..1....1..1..1....1..1..1....1..1..1....0..0..0....1..0..1....0..1..1
		

Formula

Empirical: a(n) = 6*a(n-1) - 3*a(n-2) - 34*a(n-3) + 34*a(n-4) + 82*a(n-5) - 71*a(n-6) - 130*a(n-7) + 42*a(n-8) + 165*a(n-9) + 24*a(n-10) - 146*a(n-11) - 44*a(n-12) + 72*a(n-13) + 25*a(n-14) - 15*a(n-15) - 6*a(n-16)

A188602 Number of nX4 binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

12, 144, 847, 4914, 24711, 123984, 602049, 2925040, 14100232, 67998376, 327293736, 1575603289, 7581398753, 36481691170, 175528982839, 844558652717, 4063476682348, 19550948024323, 94066412339581, 452586859846149
Offset: 1

Views

Author

R. H. Hardin Apr 05 2011

Keywords

Comments

Column 4 of A188607

Examples

			Some solutions for 3X4
..1..1..1..1....1..0..1..0....1..0..1..0....0..0..1..0....1..0..0..0
..0..0..0..1....0..1..1..1....0..0..1..0....0..1..0..0....1..0..1..1
..0..0..0..1....1..0..1..0....1..0..1..0....1..0..0..1....1..0..1..1
		

Formula

Empirical: a(n) = 7*a(n-1)+a(n-2) - 75*a(n-3) + 37*a(n-4) + 308*a(n-5) + 47*a(n-6) - 950*a(n-7) - 805*a(n-8) + 2038*a(n-9) + 2140*a(n-10) - 1974*a(n-11) - 2885*a(n-12) - 655*a(n-13) + 2291*a(n-14) + 3147*a(n-15) - 853*a(n-16) - 2458*a(n-17) - 195*a(n-18) + 403*a(n-19) + 268*a(n-20) + 293*a(n-21) + 4*a(n-22) - 9*a(n-23) - 71*a(n-24) - 113*a(n-25) + 24*a(n-26) + 42*a(n-27) - 2*a(n-28) - 4*a(n-29)

A188603 Number of nX5 binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

20, 400, 3282, 26723, 181626, 1238275, 8077216, 52884231, 342253692, 2219051847, 14342182788, 92762468854, 599440899640, 3874622754209, 25038222274359, 161813225250872, 1045666263619612, 6757468106419697, 43668245333968330
Offset: 1

Views

Author

R. H. Hardin Apr 05 2011

Keywords

Comments

Column 5 of A188607

Examples

			Some solutions for 3X5
..0..0..0..0..0....0..1..1..1..1....1..0..1..0..0....0..0..1..0..0
..1..0..1..0..1....0..0..0..0..1....1..0..0..0..0....1..0..1..0..1
..0..1..0..0..0....1..0..1..1..1....1..0..1..1..1....1..1..1..1..1
		

Formula

Empirical: a(n) = 11*a(n-1) - a(n-2) - 314*a(n-3) + 475*a(n-4) + 3868*a(n-5) - 5609*a(n-6) - 34287*a(n-7) + 26532*a(n-8) + 249100*a(n-9) - 33006*a(n-10) - 1353089*a(n-11) - 432514*a(n-12) + 5260140*a(n-13) + 4017442*a(n-14) - 15485167*a(n-15) - 18692246*a(n-16) + 38013770*a(n-17) + 53402318*a(n-18) - 80817735*a(n-19) - 98786177*a(n-20) + 142357594*a(n-21) + 124825904*a(n-22) - 198612235*a(n-23) - 114773761*a(n-24) + 212885563*a(n-25) + 52915770*a(n-26) - 142158394*a(n-27) + 124477431*a(n-28) - 46006069*a(n-29) - 418692622*a(n-30) + 279376150*a(n-31) + 596320697*a(n-32) - 392262007*a(n-33) - 364166314*a(n-34) + 372085946*a(n-35) - 201744980*a(n-36) - 400502621*a(n-37) + 611692593*a(n-38) + 511976287*a(n-39) - 491778385*a(n-40) - 498378261*a(n-41) + 15663256*a(n-42) + 257900536*a(n-43) + 355608783*a(n-44) + 38802594*a(n-45) - 410556415*a(n-46) - 192819828*a(n-47) + 276485859*a(n-48) + 185325929*a(n-49) - 135121578*a(n-50) - 112908706*a(n-51) + 52654205*a(n-52) + 51415422*a(n-53) - 16863779*a(n-54) - 19209838*a(n-55) + 4021749*a(n-56) + 6582499*a(n-57) - 225333*a(n-58) - 2230640*a(n-59) - 439291*a(n-60) + 668436*a(n-61) + 264258*a(n-62) - 139622*a(n-63) - 75456*a(n-64) + 15424*a(n-65) + 10796*a(n-66) - 424*a(n-67) - 600*a(n-68) - 32*a(n-69) for n>70

A188604 Number of n X 6 binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

33, 1089, 12405, 140617, 1288734, 11895711, 104225541, 919272280, 7996186202, 69774651726, 606462611117, 5277689194928, 45875239984531, 398935627775246, 3467958989911948, 30151575179805147, 262119133913272821
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2011

Keywords

Comments

Column 6 of A188607.

Examples

			Some solutions for 3 X 6
..0..0..0..0..0..0....0..0..0..1..0..0....0..1..0..1..0..1....1..0..1..0..1..1
..0..1..0..0..0..0....0..1..0..0..1..1....0..0..1..0..1..0....1..0..0..0..1..1
..1..0..0..0..0..0....0..0..0..1..1..1....0..1..0..1..1..1....1..1..1..1..1..1
		

Crossrefs

Cf. A188607.

A188605 Number of nX7 binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

54, 2916, 45860, 721597, 8951764, 111888105, 1318303126, 15651179908, 182869043451, 2144672066828, 25036785947669, 292716527971307, 3417501720587342, 39921719161278443, 466144062799739670
Offset: 1

Views

Author

R. H. Hardin Apr 05 2011

Keywords

Comments

Column 7 of A188607

Examples

			Some solutions for 3X7
..1..0..0..0..0..0..0....0..1..0..0..1..0..1....0..0..0..1..0..0..0
..1..0..0..1..1..1..1....0..0..1..0..0..0..0....1..0..0..0..0..1..0
..1..0..0..0..1..0..0....0..1..0..1..0..0..1....0..0..0..0..0..1..1
		

A188606 Number of nX8 binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

88, 7744, 167525, 3648942, 61078115, 1031943536, 16339159241, 260970703443, 4096182114761, 64567134345340, 1012640530801561, 15908699653534157, 249543905145564876, 3916784411012495784, 61447215941006897686
Offset: 1

Views

Author

R. H. Hardin Apr 05 2011

Keywords

Comments

Column 8 of A188607

Examples

			Some solutions for 3X8
..0..0..1..0..0..1..0..0....0..0..1..0..1..1..1..1....0..0..0..0..1..0..1..1
..0..0..0..0..0..0..1..1....1..0..0..0..0..0..0..1....0..1..0..0..1..0..0..0
..0..0..0..1..1..1..1..1....0..0..0..1..0..1..0..1....1..0..0..0..1..0..0..1
		

A188608 Number of 3Xn binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

7, 49, 211, 847, 3282, 12405, 45860, 167525, 605878, 2177496, 7787333, 27757367, 98687854, 350247594, 1241371867, 4395505741, 15552531864, 55000200159, 194426956404, 687105218857, 2427709127594, 8576325199050, 30293865359314
Offset: 1

Views

Author

R. H. Hardin Apr 05 2011

Keywords

Comments

Row 3 of A188607

Examples

			Some solutions for 3X3
..0..0..0....0..1..1....1..0..1....0..0..1....0..0..0....0..0..1....0..0..1
..0..0..0....0..0..0....1..0..0....0..0..0....0..1..1....0..0..1....1..0..0
..0..1..0....0..0..0....1..0..1....0..0..0....0..0..1....1..0..1....1..0..1
		

Formula

Empirical: a(n) = 6*a(n-1) + a(n-2) - 56*a(n-3) + 38*a(n-4) + 201*a(n-5) - 139*a(n-6) - 386*a(n-7) + 109*a(n-8) + 450*a(n-9) + 195*a(n-10) - 288*a(n-11) - 391*a(n-12) + 11*a(n-13) + 219*a(n-14) + 110*a(n-15) - 13*a(n-16) - 53*a(n-17) - 21*a(n-18) + 5*a(n-19) + 3*a(n-20) for n>21

A188609 Number of 4 X n binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

12, 144, 883, 4914, 26723, 140617, 721597, 3648942, 18246880, 90587254, 447352515, 2201344823, 10804697625, 52937908893, 259040875255, 1266429871446, 6187499700062, 30216983863723, 147517894395275, 720006607430081
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2011

Keywords

Comments

Row 4 of A188607.

Examples

			Some solutions for 4 X 3
..0..0..0....0..1..0....1..0..1....0..0..1....1..1..1....0..1..1....1..0..0
..1..0..0....0..1..0....0..0..0....0..0..1....0..0..1....1..0..0....0..1..0
..0..0..1....0..1..0....1..1..1....0..0..1....0..0..1....1..0..0....0..0..1
..0..1..1....1..1..1....0..0..0....0..1..1....1..0..1....1..0..1....1..0..0
		

Crossrefs

Cf. A188607.

Formula

Empirical: a(n) = 7*a(n-1) + 21*a(n-2) - 204*a(n-3) - 173*a(n-4) + 2511*a(n-5) + 968*a(n-6) - 16924*a(n-7) - 7305*a(n-8) + 66761*a(n-9) + 54645*a(n-10) - 143677*a(n-11) - 256857*a(n-12) + 68263*a(n-13) + 687548*a(n-14) + 523337*a(n-15) - 912372*a(n-16) - 1629031*a(n-17) + 15630*a(n-18) + 2223883*a(n-19) + 1882654*a(n-20) - 1146529*a(n-21) - 2882783*a(n-22) - 899121*a(n-23) + 1832939*a(n-24) + 1848965*a(n-25) - 159860*a(n-26) - 1209333*a(n-27) - 505167*a(n-28) + 332928*a(n-29) + 341728*a(n-30) - 17599*a(n-31) - 115526*a(n-32) - 10956*a(n-33) + 28972*a(n-34) + 12641*a(n-35) - 5903*a(n-36) - 6775*a(n-37) + 1312*a(n-38) + 688*a(n-39) - 554*a(n-40) + 201*a(n-41) + 84*a(n-42) - 36*a(n-43) for n>46.

A188610 Number of 5Xn binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

20, 400, 3354, 24711, 181626, 1288734, 8951764, 61078115, 412004463, 2754584607, 18305734529, 121093197502, 798454543443, 5251973517844, 34485457416930, 226141081539515, 1481522016356561, 9698977844261838, 63462246846069728
Offset: 1

Views

Author

R. H. Hardin Apr 05 2011

Keywords

Comments

Row 5 of A188607

Examples

			Some solutions for 5X3
..0..1..1....1..1..1....0..1..1....0..0..1....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....1..0..0....0..0..0....1..0..0....0..0..0
..0..1..1....0..1..0....1..1..1....0..0..0....0..1..0....0..0..0....0..1..1
..1..0..0....0..0..0....0..1..0....1..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....1..1..1....0..1..1....1..1..1....1..1..1....1..0..0
		

A188611 Number of 6Xn binary arrays without the pattern 1 1 0 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

33, 1089, 12529, 123984, 1238275, 11895711, 111888105, 1031943536, 9407890147, 84950474167, 762470003816, 6810903926077, 60646815176663, 538699427641981, 4776954069762764, 42305643108479831, 374327321302395882
Offset: 1

Views

Author

R. H. Hardin Apr 05 2011

Keywords

Comments

Row 6 of A188607

Examples

			Some solutions for 6X3
..0..1..0....0..1..1....0..0..1....1..0..0....0..0..0....0..1..0....0..1..1
..1..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..0..0
..0..1..0....0..0..0....0..1..1....0..0..1....1..0..1....0..0..0....0..0..0
..1..0..1....0..0..0....0..0..0....0..0..0....1..1..1....0..0..0....0..0..1
..0..0..1....1..0..1....0..0..1....1..0..0....1..0..1....1..0..0....0..0..1
..1..0..1....0..0..0....0..0..1....0..0..1....1..1..1....1..0..1....0..1..1
		
Showing 1-10 of 13 results. Next