A188614 Decimal expansion of (circumradius)/(inradius) of side-silver right triangle.
3, 2, 6, 1, 9, 7, 2, 6, 2, 7, 3, 9, 5, 6, 6, 8, 5, 6, 1, 0, 5, 8, 0, 5, 5, 1, 0, 3, 0, 0, 3, 2, 7, 4, 6, 5, 2, 2, 1, 4, 5, 0, 5, 1, 2, 7, 1, 0, 4, 2, 3, 3, 0, 4, 5, 4, 0, 6, 8, 7, 5, 2, 0, 0, 5, 5, 1, 8, 0, 2, 4, 9, 3, 4, 6, 4, 3, 1, 1, 7, 5, 6, 2, 8, 0, 0, 6, 7, 4, 0, 4, 0, 2, 8, 3, 3, 0, 7, 6, 4, 9, 3, 0, 9, 3, 9, 8, 9, 7, 7, 9, 5, 4, 0, 8, 0, 6, 3, 0, 8, 6, 6, 6, 3, 1, 9, 1, 2, 1, 5
Offset: 1
Examples
ratio=3.26197262739566856105805510300327465221450 approx.
Links
- Clark Kimberling, Two kinds of golden triangles, generalized to match continued fractions, Journal for Geometry and Graphics, 11 (2007) 165-171.
Programs
-
Maple
a179260 := sqrt(2+sqrt(2)) ; a014176 := 1+sqrt(2) ; 1/(a014176/a179260-1) ; evalf(%) ; # R. J. Mathar, Apr 05 2011
-
Mathematica
r= 1+2^(1/2); b=1; a=r*b; c=(a^2+b^2)^(1/2); area=(1/4)((a+b+c)(b+c-a)(c+a-b)(a+b-c))^(1/2); RealDigits[N[a*b*c*(a+b+c)/(8*area^2),130]][[1]]
Formula
(circumradius)/(inradius) = abc(a+b+c)/(8*area^2), where area=area(ABC).
Comments