This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188623 #30 Apr 06 2025 08:46:22 %S A188623 1,2,2,5,7,8,12,15,17,22,26,29,35,40,44,51,57,62,70,77,83,92,100,107, %T A188623 117,126,134,145,155,164,176,187,197,210,222,233,247,260,272,287,301, %U A188623 314,330,345,359,376,392,407,425,442,458,477,495,512,532,551,569,590,610,629,651,672,692,715,737,758,782,805,827,852,876,899,925,950,974,1001 %N A188623 Number of reachable configurations in a chip-firing game on a triangle starting with n chips on one vertex. %C A188623 Quasipolynomial with period 3 (see formulas below). %H A188623 Yifan Xie, <a href="/A188623/b188623.txt">Table of n, a(n) for n = 1..10000</a> %H A188623 J. Schneider, <a href="http://arxiv.org/abs/1104.0279v1">Enumeration and Quasipolynomiality of Chip-Firing Configurations</a>, arXiv:1104.0279 [math.CO], 2011. %H A188623 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1). %F A188623 a(3*k) = (3*k^2 + 3*k - 2)/2, %F A188623 a(3*k+1) = (3*k^2 + 5*k + 2)/2, %F A188623 a(3*k+2) = (3*k^2 + 7*k + 4)/2. %F A188623 G.f.: x*(1 - x^2 + 2*x^3 - x^4)/((1 + x + x^2)*(1 - x)^3). - _Bruno Berselli_, Feb 03 2016 %F A188623 a(n) = (n*(n + 3) - 4*(-1)^floor(2*n/3 + 1/3) - 2)/6. - _Bruno Berselli_, Feb 03 2016 %e A188623 For n=4, a(4)=5 because the reachable configurations are: (4, 0, 0), (2, 1, 1), (0, 2, 2), (1, 0, 3), (3, 0, 1). %t A188623 Table[(n (n + 3) - 4 (-1)^Floor[2 n/3 + 1/3] - 2)/6, {n, 1, 80}] %t A188623 (* _Bruno Berselli_, Feb 03 2016 *) %o A188623 (Sage) [(n*(n+3)-4*(-1)^floor(2*n/3+1/3)-2)/6 for n in (1..80)] # _Bruno Berselli_, Feb 03 2016 %K A188623 nonn,easy %O A188623 1,2 %A A188623 _Jon Schneider_, Apr 05 2011