cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188627 Continued fraction of e+sqrt(e^2-1).

This page as a plain text file.
%I A188627 #35 Aug 09 2024 02:54:55
%S A188627 5,4,15,6,1,13,2,1,1,21,3,2,16,1,4,1,1,157,1,9,1,3,1,5,1,2,1,3,1,1,1,
%T A188627 1,11,1,1,22,1,9,1,1,1,1,12,1,7,6,1,3,2,8,1,1,1,1,4,2,3,1,10,17,1,2,1,
%U A188627 5,8,1,2,1,6,1,12,1,39,16,14,1,46,72,16,3,1,1,5,2,1,5,2,1,10,4,2,2,3,2,1,3,2,2,27,10,4,2,8,1,2,6,3,945,1,1,106,1,1,3,1,2,6,1,1,2
%N A188627 Continued fraction of e+sqrt(e^2-1).
%H A188627 G. C. Greubel, <a href="/A188627/b188627.txt">Table of n, a(n) for n = 0..9999</a>
%e A188627 e+sqrt(e^2-1) = [5, 4, 15, 6, 1, 13, 2, 1, 1, 21, 3, 2, 16, 1, ...]
%t A188627 r = 2 E; t = (r + (-4 + r^2)^(1/2))/2; FullSimplify[t]
%t A188627 N[t, 130]
%t A188627 RealDigits[N[t, 130]][[1]] (* A188739 *)
%t A188627 ContinuedFraction[t, 120] (* A188627 *)
%o A188627 (PARI) default(realprecision, 100); contfrac(exp(1) + sqrt(exp(2) - 1)) \\ _G. C. Greubel_, Nov 01 2018
%o A188627 (Magma) SetDefaultRealField(RealField(100)); ContinuedFraction(Exp(1) + Sqrt(Exp(2) - 1)); // _G. C. Greubel_, Nov 01 2018
%Y A188627 Cf. A188739 (decimal expansion).
%K A188627 nonn,cofr
%O A188627 0,1
%A A188627 _Clark Kimberling_, Apr 11 2011
%E A188627 Offset changed by _Andrew Howroyd_, Aug 08 2024