A188633 Numbers of the form 2^k * m, with k > 1 and m an odd composite number.
36, 60, 72, 84, 100, 108, 120, 132, 140, 144, 156, 168, 180, 196, 200, 204, 216, 220, 228, 240, 252, 260, 264, 276, 280, 288, 300, 308, 312, 324, 336, 340, 348, 360, 364, 372, 380, 392, 396, 400, 408, 420, 432, 440, 444, 456, 460, 468, 476, 480, 484, 492, 500, 504, 516, 520, 528, 532
Offset: 1
Examples
36 = 2^2 * 3 * 3. It can be factored into singly even numbers in two different ways: 2 * 18 or 6^2. 60 = 2^2 * 3 * 5. It can be factored into singly even numbers as 2 * 30 or 6 * 10.
References
- Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, New York: John Wiley (1980), p. 18
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Take[DeleteCases[Union[Flatten[Table[2^k * n * Boole[Not[PrimeQ[n]]], {k, 2, 10}, {n, 3, 149, 2}]]], 0], 40]
-
PARI
is(n)=my(k=valuation(n,2));k > 1 && !isprime(n>>=k) && n > 1 \\ Charles R Greathouse IV, Dec 28 2012
-
PARI
list(lim)=my(v=List()); forcomposite(n=9,lim\4, if(n%2==0, next); my(k=4*n); while(k<=lim, listput(v,k); k<<=1)); Set(v) \\ Charles R Greathouse IV, Feb 03 2018
Formula
a(n) ~ 4n. In particular, a(n) = 4n + 4n/log n + O(n/log^2 n). - Charles R Greathouse IV, Feb 03 2018
Comments