cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188634 E.g.f.: Sum_{n>=0} (1 - exp(-(n+1)*x))^n/(n+1).

This page as a plain text file.
%I A188634 #25 Apr 17 2024 20:17:07
%S A188634 1,1,4,46,1066,41506,2441314,202229266,22447207906,3216941445106,
%T A188634 578333776748674,127464417117501586,33800841048945424546,
%U A188634 10617398393395844992306,3898852051843774954576834,1654948033478889053351543506,804119629083230641164978005986
%N A188634 E.g.f.: Sum_{n>=0} (1 - exp(-(n+1)*x))^n/(n+1).
%H A188634 Vincenzo Librandi, <a href="/A188634/b188634.txt">Table of n, a(n) for n = 0..200</a>
%F A188634 a(n) = Sum_{j=0..n} (j+1)^(n-1) * Sum_{i=0..j} (-1)^(n+j-i)*C(j, i)*(j-i)^n.
%F A188634 Ignoring the initial term, equals a diagonal of array A099594, which forms the poly-Bernoulli numbers B(-k,n).
%F A188634 Limit n->infinity a(n)^(1/n)/n^2 = 0.281682... - _Vaclav Kotesovec_, Dec 30 2012
%F A188634 a(n) = A266695(2*n-1) for n >= 1. - _Alois P. Heinz_, Apr 17 2024
%e A188634 E.g.f.: A(x) = 1 + x + 4*x^2/2! + 46*x^3/3! + 1066*x^4/4! + 41506*x^5/5! +...
%e A188634 where
%e A188634 A(x) = 1 + (1-exp(-2*x))/2 + (1-exp(-3*x))^2/3 + (1-exp(-4*x))^3/4 + (1-exp(-5*x))^4/5 + (1-exp(-6*x))^5/6 +...
%t A188634 Table[Sum[(-1)^(k+n)*(k+1)^(n-1)*k!*StirlingS2[n, k],{k,0,n}],{n,0,20}]
%t A188634 Table[n!*SeriesCoefficient[Sum[(1-E^(-x*(k+1)))^k/(k+1),{k,0,n}],{x,0,n}],{n,0,20}]  (* _Vaclav Kotesovec_, Dec 30 2012 *)
%o A188634 (PARI) {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-(k+1)*x+x*O(x^n)))^k/(k+1)), n)}
%o A188634 for(n=0, 20, print1(a(n), ", "))
%o A188634 (PARI) {a(n)=sum(j=0,n, (j+1)^(n-1)*sum(i=0,j, (-1)^(n+j-i)*binomial(j,i)*(j-i)^n))}
%o A188634 for(n=0, 20, print1(a(n), ", "))
%Y A188634 Cf. A099594, A092552, A191908, A266695.
%K A188634 nonn
%O A188634 0,3
%A A188634 _Paul D. Hanna_, Dec 28 2012