cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188644 Array of (k^n + k^(-n))/2 where k = (sqrt(x^2-1) + x)^2 for integers x >= 1.

This page as a plain text file.
%I A188644 #65 Jan 01 2019 12:01:14
%S A188644 1,1,1,1,7,1,1,97,17,1,1,1351,577,31,1,1,18817,19601,1921,49,1,1,
%T A188644 262087,665857,119071,4801,71,1,1,3650401,22619537,7380481,470449,
%U A188644 10081,97,1,1,50843527,768398401,457470751,46099201,1431431,18817,127,1
%N A188644 Array of (k^n + k^(-n))/2 where k = (sqrt(x^2-1) + x)^2 for integers x >= 1.
%C A188644 Conjecture: Given the function f(x,y) = (sqrt(x^2+y) + x)^2 and constant k=f(x,y), then for all integers x >= 1 and y=[+-]1, k may be irrational, but (k^n + k^(-n))/2 always produces integer sequences; y=-1 results shown here; y=1 results are A188645.
%C A188644 Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{2*k}(x), evaluated at x=n. - _Seiichi Manyama_, Dec 30 2018
%H A188644 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>.
%H A188644 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A188644 A(n,k) = (A188646(n,k-1) + A188646(n,k))/2.
%F A188644 A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2-1)^(k-j)*n^(2*j). - _Seiichi Manyama_, Jan 01 2019
%e A188644 Row 2 gives {( (2+sqrt(3))^(2*n) + (2-sqrt(3))^(2*n) )/2}.
%e A188644 Square array begins:
%e A188644      | 0    1       2          3             4
%e A188644 -----+---------------------------------------------
%e A188644    1 | 1,   1,      1,         1,            1, ...
%e A188644    2 | 1,   7,     97,      1351,        18817, ...
%e A188644    3 | 1,  17,    577,     19601,       665857, ...
%e A188644    4 | 1,  31,   1921,    119071,      7380481, ...
%e A188644    5 | 1,  49,   4801,    470449,     46099201, ...
%e A188644    6 | 1,  71,  10081,   1431431,    203253121, ...
%e A188644    7 | 1,  97,  18817,   3650401,    708158977, ...
%e A188644    8 | 1, 127,  32257,   8193151,   2081028097, ...
%e A188644    9 | 1, 161,  51841,  16692641,   5374978561, ...
%e A188644   10 | 1, 199,  79201,  31521799,  12545596801, ...
%e A188644   11 | 1, 241, 116161,  55989361,  26986755841, ...
%e A188644   12 | 1, 287, 164737,  94558751,  54276558337, ...
%e A188644   13 | 1, 337, 227137, 153090001, 103182433537, ...
%e A188644   14 | 1, 391, 305761, 239104711, 186979578241, ...
%e A188644   15 | 1, 449, 403201, 362074049, 325142092801, ...
%e A188644   ...
%t A188644 max = 9; y = -1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 17 2013 *)
%Y A188644 Row 2 is A011943, row 3 is A056771, row 8 is A175633, (row 2)*2 is A067902, (row 9)*2 is A089775.
%Y A188644 Column 0-5 give A000012, A056220, A144130, A243132, A243134, A243136.
%Y A188644 (column 1)*2 is A060626.
%Y A188644 Cf. A188645 (f(x, y) as above with y=1).
%Y A188644 Diagonals give A173129, A322899.
%Y A188644 Cf. A188646, A322836.
%K A188644 nonn,tabl
%O A188644 0,5
%A A188644 _Charles L. Hohn_, Apr 06 2011
%E A188644 Edited by _Seiichi Manyama_, Dec 30 2018
%E A188644 More terms from _Seiichi Manyama_, Jan 01 2019