This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188645 #32 Jan 01 2019 12:02:03 %S A188645 1,3,1,17,9,1,99,161,19,1,577,2889,721,33,1,3363,51841,27379,2177,51, %T A188645 1,19601,930249,1039681,143649,5201,73,1,114243,16692641,39480499, %U A188645 9478657,530451,10657,99,1,665857,299537289,1499219281,625447713,54100801,1555849,19601,129,1 %N A188645 Array of ((k^n)+(k^(-n)))/2 where k=(sqrt(x^2+1)+x)^2 for integers x>=1. %C A188645 Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; and constant k=f(x, y); then for all integers x>=1 and y=[+-]1, k may be irrational, but ((k^n)+(k^(-n)))/2 always produces integer sequences; y=1 results shown here; y=-1 results are A188644. %C A188645 Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{k}(x), evaluated at x=2*n^2+1. - _Seiichi Manyama_, Jan 01 2019 %H A188645 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>. %H A188645 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A188645 A(n,k) = (A188647(n,k-1) + A188647(n,k))/2. %F A188645 A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2+1)^(k-j)*n^(2*j). - _Seiichi Manyama_, Jan 01 2019 %e A188645 Square array begins: %e A188645 | 0 1 2 3 4 %e A188645 -----+--------------------------------------------- %e A188645 1 | 1, 3, 17, 99, 577, ... %e A188645 2 | 1, 9, 161, 2889, 51841, ... %e A188645 3 | 1, 19, 721, 27379, 1039681, ... %e A188645 4 | 1, 33, 2177, 143649, 9478657, ... %e A188645 5 | 1, 51, 5201, 530451, 54100801, ... %e A188645 6 | 1, 73, 10657, 1555849, 227143297, ... %e A188645 7 | 1, 99, 19601, 3880899, 768398401, ... %e A188645 8 | 1, 129, 33281, 8586369, 2215249921, ... %e A188645 9 | 1, 163, 53137, 17322499, 5647081537, ... %e A188645 10 | 1, 201, 80801, 32481801, 13057603201, ... %e A188645 11 | 1, 243, 118097, 57394899, 27893802817, ... %e A188645 12 | 1, 289, 167041, 96549409, 55805391361, ... %e A188645 13 | 1, 339, 229841, 155831859, 105653770561, ... %e A188645 14 | 1, 393, 308897, 242792649, 190834713217, ... %e A188645 15 | 1, 451, 406801, 366934051, 330974107201, ... %e A188645 ... %t A188645 max = 9; y = 1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 17 2013 *) %Y A188645 Row 1 is A001541, row 2 is A023039, row 3 is A078986, row 4 is A099370, row 5 is A099397, row 6 is A174747, row 8 is A176368, (row 1)*2 is A003499, (row 2)*2 is A087215. %Y A188645 Column 1 is A058331, (column 1)*2 is A005899. %Y A188645 A188644 (f(x, y) as above with y=-1). %Y A188645 Diagonal gives A173128. %Y A188645 Cf. A188647. %K A188645 nonn,tabl %O A188645 0,2 %A A188645 _Charles L. Hohn_, Apr 06 2011 %E A188645 Edited and extended by _Seiichi Manyama_, Jan 01 2019