cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188645 Array of ((k^n)+(k^(-n)))/2 where k=(sqrt(x^2+1)+x)^2 for integers x>=1.

This page as a plain text file.
%I A188645 #32 Jan 01 2019 12:02:03
%S A188645 1,3,1,17,9,1,99,161,19,1,577,2889,721,33,1,3363,51841,27379,2177,51,
%T A188645 1,19601,930249,1039681,143649,5201,73,1,114243,16692641,39480499,
%U A188645 9478657,530451,10657,99,1,665857,299537289,1499219281,625447713,54100801,1555849,19601,129,1
%N A188645 Array of ((k^n)+(k^(-n)))/2 where k=(sqrt(x^2+1)+x)^2 for integers x>=1.
%C A188645 Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; and constant k=f(x, y); then for all integers x>=1 and y=[+-]1, k may be irrational, but ((k^n)+(k^(-n)))/2 always produces integer sequences; y=1 results shown here; y=-1 results are A188644.
%C A188645 Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{k}(x), evaluated at x=2*n^2+1. - _Seiichi Manyama_, Jan 01 2019
%H A188645 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>.
%H A188645 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A188645 A(n,k) = (A188647(n,k-1) + A188647(n,k))/2.
%F A188645 A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2+1)^(k-j)*n^(2*j). - _Seiichi Manyama_, Jan 01 2019
%e A188645 Square array begins:
%e A188645      | 0    1       2          3             4
%e A188645 -----+---------------------------------------------
%e A188645    1 | 1,   3,     17,        99,          577, ...
%e A188645    2 | 1,   9,    161,      2889,        51841, ...
%e A188645    3 | 1,  19,    721,     27379,      1039681, ...
%e A188645    4 | 1,  33,   2177,    143649,      9478657, ...
%e A188645    5 | 1,  51,   5201,    530451,     54100801, ...
%e A188645    6 | 1,  73,  10657,   1555849,    227143297, ...
%e A188645    7 | 1,  99,  19601,   3880899,    768398401, ...
%e A188645    8 | 1, 129,  33281,   8586369,   2215249921, ...
%e A188645    9 | 1, 163,  53137,  17322499,   5647081537, ...
%e A188645   10 | 1, 201,  80801,  32481801,  13057603201, ...
%e A188645   11 | 1, 243, 118097,  57394899,  27893802817, ...
%e A188645   12 | 1, 289, 167041,  96549409,  55805391361, ...
%e A188645   13 | 1, 339, 229841, 155831859, 105653770561, ...
%e A188645   14 | 1, 393, 308897, 242792649, 190834713217, ...
%e A188645   15 | 1, 451, 406801, 366934051, 330974107201, ...
%e A188645   ...
%t A188645 max = 9; y = 1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 17 2013 *)
%Y A188645 Row 1 is A001541, row 2 is A023039, row 3 is A078986, row 4 is A099370, row 5 is A099397, row 6 is A174747, row 8 is A176368, (row 1)*2 is A003499, (row 2)*2 is A087215.
%Y A188645 Column 1 is A058331, (column 1)*2 is A005899.
%Y A188645 A188644 (f(x, y) as above with y=-1).
%Y A188645 Diagonal gives A173128.
%Y A188645 Cf. A188647.
%K A188645 nonn,tabl
%O A188645 0,2
%A A188645 _Charles L. Hohn_, Apr 06 2011
%E A188645 Edited and extended by _Seiichi Manyama_, Jan 01 2019