This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188646 #49 Jan 03 2019 03:11:45 %S A188646 1,1,1,1,13,1,1,181,33,1,1,2521,1121,61,1,1,35113,38081,3781,97,1,1, %T A188646 489061,1293633,234361,9505,141,1,1,6811741,43945441,14526601,931393, %U A188646 20021,193,1,1,94875313,1492851361,900414901,91267009,2842841,37441,253,1 %N A188646 Array of a(n)=a(n-1)*k-((k-1)/(k^n)) where a(0)=1 and k=(sqrt(x^2-1)+x)^2 for integers x>=1. %C A188646 Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; constant k=f(x, y); and initial term a(0)=1; then for all integers x>=1 and y=[+-]1, k may be irrational, but sequence a(n)=a(n-1)*k-((k-1)/(k^n)) always produces integer sequences; y=-1 results shown here; y=1 results are A188647. %C A188646 Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is (1/n) * T_{2*k+1}(n), with the Chebyshev polynomials of the first kind (type T). - _Seiichi Manyama_, Jan 01 2019 %H A188646 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>. %H A188646 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A188646 A(n,k) = 2 * A188644(n,k) - A(n,k-1). %F A188646 A(n,k) = Sum_{j=0..k} binomial(2*k+1,2*j+1)*(n^2-1)^(k-j)*n^(2*j). - _Seiichi Manyama_, Jan 01 2019 %e A188646 Square array begins: %e A188646 | 0 1 2 3 4 %e A188646 -----+--------------------------------------------- %e A188646 1 | 1, 1, 1, 1, 1, ... %e A188646 2 | 1, 13, 181, 2521, 35113, ... %e A188646 3 | 1, 33, 1121, 38081, 1293633, ... %e A188646 4 | 1, 61, 3781, 234361, 14526601, ... %e A188646 5 | 1, 97, 9505, 931393, 91267009, ... %e A188646 6 | 1, 141, 20021, 2842841, 403663401, ... %e A188646 7 | 1, 193, 37441, 7263361, 1409054593, ... %e A188646 8 | 1, 253, 64261, 16322041, 4145734153, ... %e A188646 9 | 1, 321, 103361, 33281921, 10716675201, ... %e A188646 10 | 1, 397, 158005, 62885593, 25028308009, ... %e A188646 11 | 1, 481, 231841, 111746881, 53861764801, ... %e A188646 12 | 1, 573, 328901, 188788601, 108364328073, ... %e A188646 13 | 1, 673, 453601, 305726401, 206059140673, ... %e A188646 14 | 1, 781, 610741, 477598681, 373481557801, ... %e A188646 15 | 1, 897, 805505, 723342593, 649560843009, ... %e A188646 ... %t A188646 A[n_, k_] := 1/n ChebyshevT[2k+1, n]; %t A188646 Table[A[n-k, k], {n, 1, 9}, {k, n-1, 0, -1}] // Flatten (* _Jean-François Alcover_, Jan 02 2019, after _Seiichi Manyama_ *) %Y A188646 Row 1-8 give A000012, A001570, A077420, A302329, A302330, A302331, A302332, A253880. %Y A188646 Column 1 is A082109(n-1). %Y A188646 Cf. A188644, A188647 (f(x, y) as above with y=1). %Y A188646 Diagonal gives A322904. %K A188646 nonn,tabl %O A188646 0,5 %A A188646 _Charles L. Hohn_, Apr 06 2011 %E A188646 Edited and extended by _Seiichi Manyama_, Jan 01 2019