cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188647 Array read by antidiagonals of a(n) = a(n-1)*k-((k-1)/(k^n)) where a(0)=1 and k=(sqrt(x^2+1)+x)^2 for integers x>=1.

This page as a plain text file.
%I A188647 #45 Jan 03 2019 05:40:07
%S A188647 1,5,1,29,17,1,169,305,37,1,985,5473,1405,65,1,5741,98209,53353,4289,
%T A188647 101,1,33461,1762289,2026009,283009,10301,145,1,195025,31622993,
%U A188647 76934989,18674305,1050601,21169,197,1,1136689,567451585,2921503573,1232221121,107151001,3090529,39005,257,1
%N A188647 Array read by antidiagonals of a(n) = a(n-1)*k-((k-1)/(k^n)) where a(0)=1 and k=(sqrt(x^2+1)+x)^2 for integers x>=1.
%C A188647 Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; constant k=f(x, y); and initial term a(0)=1; then for all integers x>=1 and y=[+-]1, k may be irrational, but sequence a(n)=a(n-1)*k-((k-1)/(k^n)) always produces integer sequences; y=1 results shown here; y=-1 results are A188646.
%C A188647 Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is (1/sqrt(n^2+1)) * T_{2*k+1}(sqrt(n^2+1)), with T the Chebyshev polynomial of the first kind. - _Seiichi Manyama_, Jan 02 2019
%H A188647 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>.
%H A188647 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A188647 A(n,k) = 2 * A188645(n,k) - A(n,k-1).
%F A188647 A(n,k) = Sum_{j=0..k} binomial(2*k+1,2*j)*(n^2+1)^(k-j)*n^(2*j). - _Seiichi Manyama_, Jan 02 2019
%e A188647 Square array begins:
%e A188647      | 0    1       2          3             4
%e A188647 -----+---------------------------------------------
%e A188647    1 | 1,   5,     29,       169,          985, ...
%e A188647    2 | 1,  17,    305,      5473,        98209, ...
%e A188647    3 | 1,  37,   1405,     53353,      2026009, ...
%e A188647    4 | 1,  65,   4289,    283009,     18674305, ...
%e A188647    5 | 1, 101,  10301,   1050601,    107151001, ...
%e A188647    6 | 1, 145,  21169,   3090529,    451196065, ...
%e A188647    7 | 1, 197,  39005,   7722793,   1529074009, ...
%e A188647    8 | 1, 257,  66305,  17106433,   4413393409, ...
%e A188647    9 | 1, 325, 105949,  34539049,  11259624025, ...
%e A188647   10 | 1, 401, 161201,  64802401,  26050404001, ...
%e A188647   11 | 1, 485, 235709, 114554089,  55673051545, ...
%e A188647   12 | 1, 577, 333505, 192765313, 111418017409, ...
%e A188647   13 | 1, 677, 459005, 311204713, 210996336409, ...
%e A188647   14 | 1, 785, 617009, 484968289, 381184458145, ...
%e A188647   15 | 1, 901, 812701, 733055401, 661215159001, ...
%e A188647   ...
%Y A188647 Row 1 is A001653, row 2 is A007805, row 3 is A097315, row 4 is A078988, row 5 is A097727, row 6 is A097730, row 7 is A097733, row 8 is A097736, row 9 is A097739, row 10 is A097742, row 11 is A097767, row 12 is A097770, row 13 is A097773.
%Y A188647 Column 1 is A053755.
%Y A188647 A(n,n) gives A323012.
%Y A188647 Cf. A188645, A188646 (f(x, y) as above with y=-1).
%K A188647 nonn,tabl
%O A188647 0,2
%A A188647 _Charles L. Hohn_, Apr 06 2011
%E A188647 Edited and extended by _Seiichi Manyama_, Jan 02 2019