This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188663 #9 Aug 11 2014 22:45:46 %S A188663 10045,11310,52360,230300,341055,4048352,6192520,16008300,18573282, %T A188663 21430710,44175780,49452975,75377337,89579112,174695500,201243042, %U A188663 212087876,616116800,755319180,1369585525,1557466482,1586309340,1625178126,1674425676,1744607172,1857169860,1868270250,1985347551 %N A188663 Pentagonal numbers that are the product of two pentagonal numbers greater than 1. %C A188663 See A188630 for the triangular case and A188660 for the oblong case. %H A188663 Donovan Johnson, <a href="/A188663/b188663.txt">Table of n, a(n) for n = 1..361</a> %H A188663 Trygve Breiteig, <a href="http://www.jstor.org/pss/2691083">When is the product of two oblong numbers another oblong?</a>, Math. Mag. 73 (2000), 120-129. %e A188663 11310 = 5 * 2262; that is, pen(87) = pen(2) * pen(39). %t A188663 PentagonalQ[n_] := IntegerQ[(1 + Sqrt[1 + 24*n])/6]; PenIndex[n_] := Floor[(1 + Sqrt[1 + 24*n])/6]; lim = 10^10; nMax = PenIndex[lim/5]; pen = Table[n (3 n - 1)/2, {n, 2, nMax}]; Union[Reap[Do[num = pen[[i]]*pen[[j]]; If[PentagonalQ[num], Sow[num]], {i, PenIndex[Sqrt[lim]]}, {j, i, PenIndex[lim/pen[[i]]] - 1}]][[2, 1]]] %Y A188663 Cf. A000326 (pentagonal numbers). %K A188663 nonn %O A188663 1,1 %A A188663 _T. D. Noe_, Apr 07 2011