This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188664 #45 Apr 24 2020 00:59:27 %S A188664 2,1,2,8,52,495,6470,111034,2419928,65269092,2133844440,83133090480, %T A188664 3805035352536,202147745618247,12336516593999598,857054350280418290, %U A188664 67247553674224203280,5917723267088513913032,580407202154922558537264,63093021853191022229671056,7563270705677373923076693840 %N A188664 a(n) = 2A(n)/C(n) where A(n) = A180874(n) and C(n) = Catalan(n) = A000108(n). %C A188664 For properties of these numbers including a recurrence, see the Lassalle reference. %H A188664 Andrew Howroyd, <a href="/A188664/b188664.txt">Table of n, a(n) for n = 1..100</a> %H A188664 Tewodros Amdeberhan, Victor H. Moll and Christophe Vignat, <a href="https://arxiv.org/abs/1202.1203">A probabilistic interpretation of a sequence related to Narayana Polynomials</a>, arXiv:1202.1203 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 19 2012 %H A188664 Tewodros Amdeberhan, Victor H. Moll and Christophe Vignat, <a href="https://web.math.rochester.edu/misc/ojac/vol8/68.pdf">A probabilistic interpretation of a sequence related to Narayana Polynomials</a>, Online Journal of Analytic Combinatorics, Issue 8, 2013. %H A188664 Michel Lassalle, <a href="http://arxiv.org/abs/1009.4225">Catalan numbers and a new integer sequence</a>, arXiv:1009.4225 [math.CO], 2010-2012. %H A188664 Michel Lassalle, <a href="https://doi.org/10.1016/j.jcta.2012.01.002">Two integer sequences related to Catalan numbers</a>, Journal of Combinatorial Theory, Series A, Volume 119, Issue 4, May 2012, Pages 923-935. %p A188664 A000108 := proc(n) binomial(2*n,n)/(1+n) ;end proc: %p A188664 A180874 := proc(n) option remember; if n = 1 then 1 else A000108(n)+add((-1)^j*binomial(2*n-1,2*j-1)*procname(j)*A000108(n-j),j=1..n-1) ; %*(-1)^(n-1) ; end if; end proc: %p A188664 A188664 := proc(n) return 2*A180874(n)/A000108(n) ; end proc: # _R. J. Mathar_, Apr 16 2011 %t A188664 c = CatalanNumber; %t A188664 A[n_] := A[n] = (-1)^(n - 1)*(c[n] + Sum[(-1)^j*Binomial[2*n - 1, 2*j - 1]*A[j]*c[n - j], {j, 1, n - 1}]); %t A188664 a[n_] := 2 A[n]/c[n]; %t A188664 Array[a, 21] (* _Jean-François Alcover_, Nov 25 2017 *) %Y A188664 Cf. A000108, A180874. %K A188664 nonn %O A188664 1,1 %A A188664 _N. J. A. Sloane_, Apr 16 2011