cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A188700 Number of n X 3 binary arrays without the pattern 0 0 diagonally or vertically.

Original entry on oeis.org

8, 21, 90, 304, 1141, 4084, 14925, 54049, 196508, 713225, 2590574, 9406448, 34159833, 124045128, 450458681, 1635781681, 5940155616, 21570956189, 78332387394, 284454730240, 1032963629229, 3751084683708, 13621618755397
Offset: 1

Views

Author

R. H. Hardin, Apr 08 2011

Keywords

Comments

Column 3 of A188706.

Examples

			Some solutions for 4 X 3:
..1..1..1....0..0..1....1..1..0....1..1..1....0..1..1....0..0..0....1..1..1
..1..0..1....1..1..1....1..1..1....0..1..1....1..1..0....1..1..1....0..1..0
..1..1..1....1..1..1....0..0..1....1..1..1....1..1..1....0..1..1....1..1..1
..1..0..1....1..1..0....1..1..1....0..1..1....1..0..0....1..1..1....0..1..1
		

Crossrefs

Cf. A188706.

Formula

Empirical: a(n) = a(n-1) + 8*a(n-2) + 6*a(n-3) - a(n-4) - a(n-5).
Empirical g.f.: x*(8 + 13*x + 5*x^2 - 2*x^3 - x^4) / ((1 + x)*(1 - 2*x - 6*x^2 + x^4)). - Colin Barker, Apr 28 2018

A188701 Number of n X 4 binary arrays without the pattern 0 0 diagonally or vertically.

Original entry on oeis.org

16, 55, 387, 1876, 10857, 57665, 318732, 1729531, 9464035, 51591068, 281717653, 1537169293, 8390298820, 45789639603, 249911548135, 1363931051824, 7443964229917, 40626890315469, 221729775973184, 1210135365944631
Offset: 1

Views

Author

R. H. Hardin, Apr 08 2011

Keywords

Comments

Column 4 of A188706.

Examples

			Some solutions for 3 X 4:
..0..0..1..0....1..1..0..0....1..1..0..1....1..1..1..1....1..1..0..0
..1..1..1..1....1..1..1..1....1..0..1..1....1..1..1..0....0..1..1..1
..0..0..0..0....0..1..1..0....1..1..1..1....0..1..1..1....1..1..0..0
		

Crossrefs

Cf. A188706.

Formula

Empirical: a(n) = a(n-1) + 20*a(n-2) + 27*a(n-3) - 14*a(n-4) - 25*a(n-5) + 4*a(n-6) + 5*a(n-7) - a(n-8).
Empirical g.f.: x*(16 + 39*x + 12*x^2 - 43*x^3 - 20*x^4 + 9*x^5 + 4*x^6 - x^7) / ((1 + x)*(1 + 2*x - x^2)*(1 - 4*x - 9*x^2 + 5*x^3 + 4*x^4 - x^5)). - Colin Barker, Apr 28 2018

A188702 Number of nX5 binary arrays without the pattern 0 0 diagonally or vertically.

Original entry on oeis.org

32, 144, 1665, 11556, 103484, 813309, 6814290, 55337580, 456131965, 3733374889, 30657827284, 251373054600, 2062533960693, 16917792861256, 138787419681888, 1138485405941113, 9339379255511170, 76613020663877804, 628477682370006669
Offset: 1

Views

Author

R. H. Hardin Apr 08 2011

Keywords

Comments

Column 5 of A188706

Examples

			Some solutions for 3X5
..1..1..1..1..1....0..0..1..0..0....0..1..1..1..0....1..0..0..1..0
..1..1..1..1..0....1..1..1..1..1....1..1..1..1..1....0..1..1..1..1
..0..1..1..0..1....0..0..1..0..1....1..1..0..1..0....1..1..0..1..1
		

Formula

Empirical: a(n) = a(n-1) +49*a(n-2) +107*a(n-3) -154*a(n-4) -404*a(n-5) +250*a(n-6) +472*a(n-7) -278*a(n-8) -168*a(n-9) +131*a(n-10) -9*a(n-11) -7*a(n-12) +a(n-13)

A188703 Number of nX6 binary arrays without the pattern 0 0 diagonally or vertically.

Original entry on oeis.org

64, 377, 7164, 71152, 986929, 11462588, 145764780, 1769780565, 21988745988, 270110390804, 3336423566677, 41102425332512, 506994024857925, 6249982640820369, 77068431918058476, 950205205067610609
Offset: 1

Views

Author

R. H. Hardin Apr 08 2011

Keywords

Comments

Column 6 of A188706

Examples

			Some solutions for 3X6
..1..1..1..1..0..1....0..1..0..1..0..1....0..0..0..1..1..0....0..0..1..0..1..1
..0..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1
..1..1..1..1..1..0....0..1..0..1..0..0....1..1..1..1..0..1....0..1..0..0..1..0
		

Formula

Empirical: a(n) = a(n-1) +119*a(n-2) +397*a(n-3) -1395*a(n-4) -5213*a(n-5) +8797*a(n-6) +24443*a(n-7) -36756*a(n-8) -45888*a(n-9) +84092*a(n-10) +19388*a(n-11) -83412*a(n-12) +24912*a(n-13) +22741*a(n-14) -12257*a(n-15) -1459*a(n-16) +1607*a(n-17) -49*a(n-18) -71*a(n-19) +3*a(n-20) +a(n-21)

A188704 Number of nX7 binary arrays without the pattern 0 0 diagonally or vertically.

Original entry on oeis.org

128, 987, 30825, 438048, 9413801, 161506225, 3118943536, 56585607231, 1060220669261, 19540000913840, 363127600370277, 6720433284624777, 124629114169963492, 2308929622288774467, 42796685753793213877
Offset: 1

Views

Author

R. H. Hardin Apr 08 2011

Keywords

Comments

Column 7 of A188706

Examples

			Some solutions for 3X7
..1..1..1..1..0..1..1....1..1..0..0..0..1..1....1..1..0..0..1..0..1
..1..1..1..0..1..1..1....1..1..1..1..1..1..1....0..1..1..1..1..1..1
..1..0..0..1..1..1..1....0..0..1..1..1..0..1....1..1..1..1..0..0..0
		

Formula

Empirical: a(n) = a(n-1) +288*a(n-2) +1417*a(n-3) -11199*a(n-4) -59098*a(n-5) +236338*a(n-6) +948288*a(n-7) -3278724*a(n-8) -6872522*a(n-9) +27696998*a(n-10) +17458752*a(n-11) -128873759*a(n-12) +35614933*a(n-13) +298960774*a(n-14) -258487597*a(n-15) -292412017*a(n-16) +426432960*a(n-17) +93229829*a(n-18) -323469437*a(n-19) +28233040*a(n-20) +135906279*a(n-21) -29253017*a(n-22) -34819910*a(n-23) +8867758*a(n-24) +5748836*a(n-25) -1311708*a(n-26) -619302*a(n-27) +94650*a(n-28) +41064*a(n-29) -2481*a(n-30) -1413*a(n-31) -22*a(n-32) +17*a(n-33) +a(n-34)

A188705 Number of nX8 binary arrays without the pattern 0 0 diagonally or vertically.

Original entry on oeis.org

256, 2584, 132633, 2696784, 89796720, 2275402541, 66743533552, 1808994829500, 51125945437653, 1413407939489088, 39524443386479892, 1098772573002280493, 30637099060362271520, 852972971744061721372, 23765518994514834443569
Offset: 1

Views

Author

R. H. Hardin Apr 08 2011

Keywords

Comments

Column 8 of A188706

Examples

			Some solutions for 3X8
..0..1..0..0..1..1..0..0....1..1..0..1..1..0..1..1....0..1..1..0..1..1..1..1
..1..1..1..1..1..1..1..1....1..1..1..1..0..1..1..0....1..1..1..1..1..0..0..1
..0..1..0..0..0..0..1..0....1..0..0..1..1..1..1..1....0..1..1..1..1..1..1..1
		

Formula

Empirical: a(n) = a(n-1) +696*a(n-2) +4936*a(n-3) -82950*a(n-4) -616098*a(n-5) +5387228*a(n-6) +30950144*a(n-7) -229883974*a(n-8) -753348830*a(n-9) +6337764840*a(n-10) +7619008432*a(n-11) -107663412194*a(n-12) +25195400302*a(n-13) +1086657210156*a(n-14) -1356643892644*a(n-15) -6236063377412*a(n-16) +13454440595448*a(n-17) +18589078406560*a(n-18) -66554017839856*a(n-19) -19614260318346*a(n-20) +196396672572042*a(n-21) -43999810291559*a(n-22) -380210157189901*a(n-23) +198533185518402*a(n-24) +515556399680338*a(n-25) -364326844069866*a(n-26) -515553663974322*a(n-27) +415693332649386*a(n-28) +396870539972130*a(n-29) -324787601926242*a(n-30) -242615012285186*a(n-31) +179162945610905*a(n-32) +119013925477951*a(n-33) -69667408704698*a(n-34) -46122573377086*a(n-35) +18502629566324*a(n-36) +13618614146836*a(n-37) -3081687698592*a(n-38) -2923738668068*a(n-39) +237468606708*a(n-40) +432970226764*a(n-41) +13927267090*a(n-42) -41496410974*a(n-43) -5091537704*a(n-44) +2338817568*a(n-45) +488006390*a(n-46) -62776202*a(n-47) -21992324*a(n-48) +146568*a(n-49) +460978*a(n-50) +22438*a(n-51) -3972*a(n-52) -300*a(n-53) +11*a(n-54) +a(n-55)

A188707 Number of 3 X n binary arrays without the pattern 0 0 diagonally or vertically.

Original entry on oeis.org

5, 21, 90, 387, 1665, 7164, 30825, 132633, 570690, 2455551, 10565685, 45461772, 195611805, 841673709, 3621533130, 15582644523, 67048623225, 288495182556, 1241330043105, 5341164667857, 22981833209970, 98885672046279
Offset: 1

Views

Author

R. H. Hardin, Apr 08 2011

Keywords

Comments

Row 3 of A188706.

Examples

			Some solutions for 3 X 3:
  1 1 0    1 0 0    1 1 0    1 0 0    0 0 0    1 0 0    0 0 1
  1 1 1    1 1 1    1 0 1    1 1 1    1 1 1    1 1 1    1 1 1
  1 0 1    1 1 0    0 1 1    0 0 1    0 0 1    1 1 1    0 1 1
		

Programs

Formula

a(n) = 5*a(n-1) - 3*a(n-2).
a(n) = [1,1;1,4]^(n-1).{1,2}.{1,2}. - John M. Campbell, Jul 09 2011
G.f.: x*(5 - 4*x)/(1 - 5*x + 3*x^2). - Colin Barker, Mar 11 2012

A188708 Number of 4 X n binary arrays without the pattern 0 0 diagonally or vertically.

Original entry on oeis.org

8, 49, 304, 1876, 11556, 71152, 438048, 2696784, 16602304, 102209216, 629233216, 3873764352, 23848153088, 146816985344, 903853103104, 5564413613056, 34256339608576, 210893165924352, 1298326906544128, 7992922619695104
Offset: 1

Views

Author

R. H. Hardin, Apr 08 2011

Keywords

Comments

Row 4 of A188706.

Examples

			Some solutions for 4 X 3:
  1 0 0   1 1 1   1 1 1   0 1 1   1 1 1   1 1 1   0 1 1
  0 1 1   0 0 0   1 1 0   1 1 1   1 1 0   1 1 1   1 1 1
  1 1 1   1 1 1   1 1 1   1 1 1   0 1 1   1 0 0   1 1 1
  1 1 0   1 1 0   0 1 1   1 0 0   1 1 1   1 1 1   0 0 0
		

Crossrefs

Cf. A188706.

Formula

Empirical: a(n) = 8*a(n-1) - 12*a(n-2) + 4*a(n-3).
Empirical g.f.: x*(8 - 15*x + 8*x^2) / (1 - 8*x + 12*x^2 - 4*x^3). - Colin Barker, Apr 28 2018

A188709 Number of 5 X n binary arrays without the pattern 0 0 diagonally or vertically.

Original entry on oeis.org

13, 120, 1141, 10857, 103484, 986929, 9413801, 89796720, 856564045, 8170716249, 77940041492, 743466128137, 7091886123065, 67649146608936, 645301822994341, 6155501787932937, 58717023436375724, 560098747441089889
Offset: 1

Views

Author

R. H. Hardin, Apr 08 2011

Keywords

Comments

Row 5 of A188706.

Examples

			Some solutions for 5 X 3:
  0 0 0   1 1 0   0 0 1   1 1 1   0 1 0   1 1 1   1 1 1
  1 1 1   1 0 1   1 1 1   1 1 0   1 1 1   1 0 1   1 1 1
  0 0 1   1 1 1   1 1 1   1 0 1   0 1 0   0 1 1   1 1 1
  1 1 1   1 1 1   1 0 1   1 1 1   1 1 1   1 1 0   1 1 0
  0 1 1   0 0 0   0 1 1   1 1 1   1 0 1   1 0 1   0 0 1
		

Crossrefs

Cf. A188706.

Formula

Empirical: a(n) = 13*a(n-1) - 36*a(n-2) + 29*a(n-3) - 5*a(n-4) for n>5.
Empirical g.f.: x*(13 - 49*x + 49*x^2 - 33*x^3 + 4*x^4) / ((1 - x)*(1 - 12*x + 24*x^2 - 5*x^3)). - Colin Barker, Apr 28 2018

A188710 Number of 6 X n binary arrays without the pattern 0 0 diagonally or vertically.

Original entry on oeis.org

21, 288, 4084, 57665, 813309, 11462588, 161506225, 2275402541, 32056524184, 451618426905, 6362474783637, 89635548416108, 1262799579803897, 17790516723173509, 250635561977240232, 3530992705334939489
Offset: 1

Views

Author

R. H. Hardin, Apr 08 2011

Keywords

Comments

Row 6 of A188706.

Examples

			Some solutions for 6 X 3:
  1 0 1   1 1 0   0 1 1   1 1 1   1 1 1   1 0 1   1 1 0
  1 1 1   0 0 1   1 1 0   1 1 1   1 1 1   0 1 1   0 0 1
  1 1 1   1 1 1   1 1 1   0 0 1   1 1 0   1 1 1   1 1 1
  0 0 1   0 1 1   0 0 0   1 1 1   0 1 1   0 0 0   0 1 0
  1 1 1   1 1 1   1 1 1   1 1 1   1 1 1   1 1 1   1 1 1
  0 1 0   0 0 1   0 1 0   0 1 1   0 0 0   0 1 1   1 1 0
		

Crossrefs

Cf. A188706.

Formula

Empirical: a(n) = 21*a(n-1) - 112*a(n-2) + 217*a(n-3) - 157*a(n-4) + 36*a(n-5) for n>6.
Empirical g.f.: x*(21 - 153*x + 388*x^2 - 400*x^3 + 553*x^4 - 189*x^5) / (1 - 21*x + 112*x^2 - 217*x^3 + 157*x^4 - 36*x^5). - Colin Barker, Apr 28 2018
Showing 1-10 of 12 results. Next