A188707 Number of 3 X n binary arrays without the pattern 0 0 diagonally or vertically.
5, 21, 90, 387, 1665, 7164, 30825, 132633, 570690, 2455551, 10565685, 45461772, 195611805, 841673709, 3621533130, 15582644523, 67048623225, 288495182556, 1241330043105, 5341164667857, 22981833209970, 98885672046279
Offset: 1
Examples
Some solutions for 3 X 3: 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), #12.7.8.
- Index entries for linear recurrences with constant coefficients, signature (5,-3).
Programs
-
Mathematica
LinearRecurrence[{5, -3}, {5, 21}, 22] (* Robert G. Wilson v, Jul 13 2011 *)
-
PARI
\\ using formula by John M. Campbell a(n)=my(v=[1,1;1,4]^(n-1)*[1,2]~); v[1]*1+v[2]*2; \\ Joerg Arndt, Mar 19 2021
Formula
a(n) = 5*a(n-1) - 3*a(n-2).
a(n) = [1,1;1,4]^(n-1).{1,2}.{1,2}. - John M. Campbell, Jul 09 2011
G.f.: x*(5 - 4*x)/(1 - 5*x + 3*x^2). - Colin Barker, Mar 11 2012
Comments