cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188750 Number of 5Xn binary arrays without the pattern 1 1 1 diagonally, vertically or antidiagonally.

This page as a plain text file.
%I A188750 #7 Jul 22 2025 11:20:39
%S A188750 24,576,9504,176002,3283906,60714322,1127318294,20939826298,
%T A188750 388867222760,7222456829200,134147557893368,2491616383146400,
%U A188750 46278849344155436,859576817744096818,15965664732975667282,296544220226026744002
%N A188750 Number of 5Xn binary arrays without the pattern 1 1 1 diagonally, vertically or antidiagonally.
%C A188750 Row 5 of A188747
%H A188750 R. H. Hardin, <a href="/A188750/b188750.txt">Table of n, a(n) for n = 1..200</a>
%F A188750 Empirical: a(n) = 23*a(n-1) -70*a(n-2) -296*a(n-3) +2160*a(n-4) -14475*a(n-5) +17757*a(n-6) -1140806*a(n-7) +3091958*a(n-8) +12909222*a(n-9) -21584968*a(n-10) +52956008*a(n-11) -238059780*a(n-12) -437747824*a(n-13) +383951904*a(n-14) +179875536*a(n-15) +5217136240*a(n-16) +2716595936*a(n-17) +8603806528*a(n-18) -9963475328*a(n-19) -47487929344*a(n-20) -70724703488*a(n-21) -66827979008*a(n-22) +90736826112*a(n-23) +204642169856*a(n-24) +311200557056*a(n-25) +128833723392*a(n-26) -350912552960*a(n-27) -222173790208*a(n-28) +23629496320*a(n-29) -7108034560*a(n-30) +68068900864*a(n-31) +34536947712*a(n-32) -23668457472*a(n-33)
%e A188750 Some solutions for 5X3
%e A188750 ..0..1..0....0..1..1....1..0..0....1..0..0....1..1..0....0..1..1....0..1..1
%e A188750 ..1..0..1....0..0..1....0..0..0....0..0..1....0..0..0....0..0..0....1..1..0
%e A188750 ..1..0..0....0..1..0....0..1..1....0..0..1....0..0..0....0..1..1....0..0..1
%e A188750 ..0..0..1....0..0..1....0..0..1....1..1..0....1..0..0....0..0..0....1..0..1
%e A188750 ..0..0..1....1..0..0....1..1..0....0..0..1....0..1..0....0..0..1....0..0..0
%K A188750 nonn
%O A188750 1,1
%A A188750 _R. H. Hardin_ Apr 09 2011