This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188751 #7 Jul 22 2025 11:20:46 %S A188751 44,1936,52072,1605680,50067824,1536573216,47325959200,1458401558672, %T A188751 44920478350336,1383729806664224,42625318691202112, %U A188751 1313038765458668928,40447195582501099328,1245947218943096747520,38380504925120799720192 %N A188751 Number of 6Xn binary arrays without the pattern 1 1 1 diagonally, vertically or antidiagonally. %C A188751 Row 6 of A188747 %H A188751 R. H. Hardin, <a href="/A188751/b188751.txt">Table of n, a(n) for n = 1..200</a> %F A188751 Empirical: a(n) = 38*a(n-1) -124*a(n-2) -3140*a(n-3) +8096*a(n-4) -259716*a(n-5) +4687896*a(n-6) -20613384*a(n-7) +158611248*a(n-8) -152099872*a(n-9) -13890193664*a(n-10) +55525795136*a(n-11) +4284484192*a(n-12) +18954549312*a(n-13) +3859060452864*a(n-14) -18802857067520*a(n-15) +6618272780544*a(n-16) -129224888191232*a(n-17) -307268058830848*a(n-18) +2671879628283392*a(n-19) -585615778051072*a(n-20) +39201937249583104*a(n-21) -37346178411466752*a(n-22) -196181188224899072*a(n-23) -537282380088098816*a(n-24) -2622956973995761664*a(n-25) +8868569915155144704*a(n-26) +4794513849125715968*a(n-27) +70931224429358727168*a(n-28) -56307294252038979584*a(n-29) -539141458256081846272*a(n-30) -113026663059443810304*a(n-31) -1737055429706877370368*a(n-32) +7690330843187796770816*a(n-33) +17066206218717563715584*a(n-34) +925263814637023920128*a(n-35) -15016901284292099833856*a(n-36) -262768297742713124552704*a(n-37) -237735194459221570617344*a(n-38) +208065137218162341707776*a(n-39) +583957561140035585048576*a(n-40) +3933460473824662014394368*a(n-41) +2505249088068863926468608*a(n-42) -3712513659214321713938432*a(n-43) -6531598835134203451932672*a(n-44) -30139657382461385138503680*a(n-45) -20079613559888106236149760*a(n-46) +5519863579946158974304256*a(n-47) +37778342641740928904069120*a(n-48) +207263786160210170693550080*a(n-49) +123006895613856303321972736*a(n-50) -101082629303525802179035136*a(n-51) -185319427418157801355083776*a(n-52) -618032763288494987391533056*a(n-53) -327276405047842411712086016*a(n-54) +561289977541862694919864320*a(n-55) +525810807819272801717583872*a(n-56) +534368575529962805707931648*a(n-57) +190648877353749529065684992*a(n-58) -759582431787077877045919744*a(n-59) -499791238369510015211929600*a(n-60) +146555837298938649803489280*a(n-61) +128070779632773779041550336*a(n-62) +52215683618678965419376640*a(n-63) +32064120172628401157308416*a(n-64) +1865524416321017685737472*a(n-65) -905725910647102129569792*a(n-66) -76701561858484315619328*a(n-67) %e A188751 Some solutions for 6X3 %e A188751 ..0..1..0....1..1..1....0..1..0....1..0..0....1..1..0....1..1..0....1..0..1 %e A188751 ..0..1..0....0..0..1....0..1..1....0..0..0....1..0..1....0..1..1....1..0..1 %e A188751 ..0..0..1....1..0..0....1..0..1....0..1..0....0..0..0....1..0..0....0..0..0 %e A188751 ..0..0..1....0..0..0....0..0..0....0..0..0....0..1..0....0..0..0....1..0..1 %e A188751 ..0..0..0....1..1..0....0..0..0....1..1..0....1..0..1....0..0..1....1..1..0 %e A188751 ..1..1..0....0..0..0....0..0..0....1..1..1....0..1..0....1..1..1....0..0..0 %K A188751 nonn %O A188751 1,1 %A A188751 _R. H. Hardin_ Apr 09 2011