cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188764 Primes p such that all prime factors of p-2 have exponent 3.

This page as a plain text file.
%I A188764 #26 Jan 18 2025 09:06:56
%S A188764 3,29,127,24391,274627,328511,357913,571789,1157627,1442899,1860869,
%T A188764 2146691,2924209,5177719,9129331,9938377,10503461,12326393,15438251,
%U A188764 18191449,24642173,26730901,28372627,30080233,39651823
%N A188764 Primes p such that all prime factors of p-2 have exponent 3.
%C A188764 A048636 is the subsequence of terms where there is only one prime divisor of p-2. - _M. F. Hasler_, Jan 13 2025
%H A188764 Charles R Greathouse IV, <a href="/A188764/b188764.txt">Table of n, a(n) for n = 1..10000</a>
%F A188764 a(n) >> n^3. - _Charles R Greathouse IV_, Jan 14 2025
%e A188764 30080233-2 = 311^3, 39651823-2 = 11^3*31^3, ...
%e A188764 3-2 = 1 has no prime factors, so is trivially a member.
%t A188764 Prepend[Select[Table[Prime[n],{n,3000000}],Length[Union[Last/@FactorInteger[#-2]]]==1&&Union[Last/@FactorInteger[#-2]]=={3}&], 3]
%t A188764 Prepend[Select[Prime[Range[25*10^5]],Union[FactorInteger[#-2][[All,2]]]=={3}&], 3] (* _Harvey P. Dale_, Nov 22 2018 *)
%t A188764 seq[lim_] := Select[Select[Range[Floor[Surd[lim-2, 3]]], SquareFreeQ]^3 + 2, PrimeQ]; seq[4*10^7] (* _Amiram Eldar_, Jan 18 2025 *)
%o A188764 (PARI) list(lim)=my(v=List()); forsquarefree(k=1,sqrtnint(lim\1-2,3), my(p=k[1]^3+2); if(isprime(p), listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Jan 14 2025
%Y A188764 Subsequence of A144953; A048636 is a subsequence.
%Y A188764 Cf. A089195, A188717.
%K A188764 nonn
%O A188764 1,1
%A A188764 _Vladimir Joseph Stephan Orlovsky_, Apr 09 2011
%E A188764 a(1) = 3 inserted by _Charles R Greathouse IV_, Jan 14 2025