A188769 Number of nX4 binary arrays without the pattern 0 1 0 vertically or horizontally.
12, 144, 1103, 7868, 60215, 471349, 3658041, 28240356, 218167554, 1687182731, 13048449716, 100897161709, 780153946407, 6032429478257, 46645504480302, 360683651186398, 2788957182000107, 21565381169985048, 166752620658425497
Offset: 1
Keywords
Examples
Some solutions for 3X4 ..1..0..0..0....0..0..1..1....0..1..1..1....0..1..1..1....1..1..0..0 ..1..0..0..0....0..0..0..0....0..0..1..1....1..0..0..0....1..0..0..0 ..0..0..0..0....0..0..0..1....0..1..1..1....1..0..1..1....1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = 9*a(n-1) -26*a(n-2) +120*a(n-3) +55*a(n-4) -207*a(n-5) +1143*a(n-6) -2223*a(n-7) -7821*a(n-8) +5631*a(n-9) +15011*a(n-10) +4093*a(n-11) -1011*a(n-12) -14644*a(n-13) -19696*a(n-14) -2087*a(n-15) +2890*a(n-16) +11655*a(n-17) +9364*a(n-18) +4150*a(n-19) +1661*a(n-20) -896*a(n-21) -501*a(n-22) -175*a(n-23) -82*a(n-24) +24*a(n-25) +12*a(n-26)
Comments