cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188777 T(n,k) = Number of n-turn bishop's tours on a k X k board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 4, 0, 16, 20, 0, 0, 25, 56, 28, 0, 0, 36, 120, 152, 24, 0, 0, 49, 220, 488, 328, 8, 0, 0, 64, 364, 1192, 1720, 584, 0, 0, 0, 81, 560, 2468, 5816, 5464, 840, 0, 0, 0, 100, 816, 4560, 15424, 26360, 15824, 784, 0, 0, 0, 121, 1140, 7760, 34736, 91120, 112680, 40496
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2011

Keywords

Comments

Table starts
.1.4..9..16.....25......36.......49.......64.......81......100.....121....144
.0.4.20..56....120.....220......364......560......816.....1140....1540...2024
.0.0.28.152....488....1192.....2468.....4560.....7760....12400...18860..27560
.0.0.24.328...1720....5816....15424....34736....69776...128528..221448.361528
.0.0..8.584...5464...26360....91120...252720...603696..1288592.2525400
.0.0..0.840..15824..112680...516160..1778608..5082912.12622640
.0.0..0.784..40496..451104..2803552.12139552.41792672
.0.0..0.384..88264.1665344.14497784.80088992
.0.0..0...0.159704.5607456
.0.0..0...0.229296

Examples

			Some n=4 solutions for 4 X 4
..0..0..0..0....0..4..0..1....0..0..0..4....3..0..0..0....0..1..0..0
..0..3..0..0....0..0..3..0....0..0..0..0....0..2..0..0....4..0..2..0
..2..0..4..0....0..2..0..0....0..3..0..1....0..0..4..0....0..3..0..0
..0..1..0..0....0..0..0..0....0..0..2..0....0..0..0..1....0..0..0..0
		

Crossrefs

Row 2 is A002492(n-1).

Formula

Empirical: T(1,k) = k^2.
Empirical: T(2,k) = (4/3)*k^3 - 2*k^2 + (2/3)*k.
Empirical: T(3,k) = 4*T(3,k-1)-5*T(3,k-2)+5*T(3,k-4)-4*T(3,k-5)+T(3,k-6).
Empirical: T(4,k) = 4*T(4,k-1)-4*T(4,k-2)-4*T(4,k-3)+10*T(4,k-4)-4*T(4,k-5)-4*T(4,k-6)+4*T(4,k-7)-T(4,k-8).
Empirical: T(5,k) = 4*T(5,k-1)-3*T(5,k-2)-8*T(5,k-3)+14*T(5,k-4)-14*T(5,k-6)+8*T(5,k-7)+3*T(5,k-8)-4*T(5,k-9)+T(5,k-10).
Empirical: T(6,k) = 4*T(6,k-1)-2*T(6,k-2)-12*T(6,k-3)+17*T(6,k-4)+8*T(6,k-5)-28*T(6,k-6)+8*T(6,k-7)+17*T(6,k-8)-12*T(6,k-9)-2*T(6,k-10)+4*T(6,k-11)-T(6,k-12).