A188781 Number of 6-turn bishop's tours on an n X n board summed over all starting positions.
0, 0, 0, 840, 15824, 112680, 516160, 1778608, 5082912, 12622640, 28225472, 58013112, 111476080, 202472856, 350897664, 584067552, 939135552, 1464903648, 2225144448, 3300867240, 4794722064, 6833735304, 9574980800, 13208790672
Offset: 1
Keywords
Examples
Some solutions for 4 X 4 ..0..0..4..0....0..2..0..6....0..4..0..1....0..3..0..0....0..5..0..3 ..0..3..0..1....1..0..4..0....5..0..2..0....2..0..4..0....6..0..4..0 ..5..0..2..0....0..5..0..3....0..0..0..3....0..1..0..5....0..2..0..0 ..0..6..0..0....0..0..0..0....0..0..6..0....0..0..6..0....1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..42
Crossrefs
Cf. A188777.
Formula
Empirical: a(n) = 4*a(n-1) -2*a(n-2) -12*a(n-3) +17*a(n-4) +8*a(n-5) -28*a(n-6) +8*a(n-7) +17*a(n-8) -12*a(n-9) -2*a(n-10) +4*a(n-11) -a(n-12).
From Vaclav Kotesovec, Sep 01 2012: (Start)
Empirical: G.f.: 8*x^4*(105 + 1558*x + 6383*x^2 + 13396*x^3 + 14367*x^4 + 9654*x^5 + 2937*x^6 + 528*x^7)/((1-x)^8*(1+x)^4).
Empirical: a(n) = -297/4 + 13961*n/28 - 32551*n^2/30 + 54158*n^3/45 - 4625*n^4/6 + 5189*n^5/18 - 872*n^6/15 + 1529*n^7/315 + (-1)^n*(297/4 - 439*n/4 + 99*n^2/2 - 7*n^3).
(End)
Comments