This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188782 #13 May 12 2023 14:59:56 %S A188782 0,0,0,784,40496,451104,2803552,12139552,41792672,121269248,310362944, %T A188782 718151344,1534460624,3067048224,5801302304,10464095808,18125622336, %U A188782 30299632896,49104515712,77410664016,119081302128,179178580768 %N A188782 Number of 7-turn bishop's tours on an n X n board summed over all starting positions. %C A188782 Row 7 of A188777. %H A188782 R. H. Hardin, <a href="/A188782/b188782.txt">Table of n, a(n) for n = 1..28</a> %F A188782 Contribution from _Vaclav Kotesovec_, Sep 01 2012: (Start) %F A188782 Empirical: Recurrence: a(n) = a(n-14) - 4*a(n-13) + a(n-12) + 16*a(n-11) - 19*a(n-10) - 20*a(n-9) + 45*a(n-8) - 45*a(n-6) + 20*a(n-5) + 19*a(n-4) - 16*a(n-3) - a(n-2) + 4*a(n-1). %F A188782 Empirical: G.f.: 16*x^4*(49 + 2335*x + 18119*x^2 + 65761*x^3 + 125593*x^4 + 154411*x^5 + 109333*x^6 + 52763*x^7 + 12090*x^8 + 1722*x^9)/((1-x)^9*(1+x)^5). %F A188782 Empirical: a(n) = 6421/16 - 581677*n/210 + 2022619*n^2/315 - 340262*n^3/45 + 1915471*n^4/360 - 106466*n^5/45 + 29363*n^6/45 - 31916*n^7/315 + 16943*n^8/2520 + (-1)^n*(-6421/16 + 1645*n/2 - 557*n^2 + 155*n^3 - 123*n^4/8). %F A188782 (End) %e A188782 Some solutions for 4 X 4 %e A188782 ..0..4..0..2....0..3..0..0....4..0..0..0....0..0..1..0....0..0..3..0 %e A188782 ..7..0..3..0....4..0..2..0....0..3..0..7....0..5..0..2....0..1..0..4 %e A188782 ..0..1..0..5....0..6..0..1....2..0..6..0....4..0..6..0....2..0..6..0 %e A188782 ..0..0..6..0....7..0..5..0....0..1..0..5....0..3..0..7....0..5..0..7 %Y A188782 Cf. A188777. %K A188782 nonn %O A188782 1,4 %A A188782 _R. H. Hardin_, Apr 10 2011