A188792 Table with T(n,k) the number of word structures of length n which can be decomposed into k palindromes but not fewer.
1, 1, 1, 2, 2, 1, 2, 8, 3, 2, 5, 16, 18, 8, 5, 5, 45, 57, 56, 25, 15, 15, 84, 220, 213, 203, 90, 52, 15, 235, 583, 1005, 909, 826, 364, 203, 52, 402, 1965, 3358, 4914, 4247, 3708, 1624, 877, 52, 1190, 4737, 13250, 19340, 25735, 21511, 18127, 7893, 4140, 203, 2020
Offset: 1
Examples
T(4,3) = 3; the 3 strings are 1,1,2,3; 1,2,2,3; and 1,2,3,3. Greedy parsing of 1,1,2,1 gives 1,1|2|1 into 3 parts, but 1|1,2,1 is better. The table starts: 1 1 1 2 2 1 2 8 3 2 5 16 18 8 5
Links
- Franklin T. Adams-Watters, Rows n = 1..14, flattened
Programs
-
PARI
numpal(v)={local(w,n);w=vector((n=#v)+1,i,i-1); for(t=2,2*n,forstep(i=t\2,max(1,t-n),-1,if(v[i]!=v[j=t-i],break);w[j+1]=min(w[j+1],w[i]+1))); w[n+1]} nextsetpart(v)={local(w,n);w=vector(n=#v);w[1]=1;for(k=2,n,w[k]=max(w[k-1],v[k])); while(n>1,if(v[n]<=w[n-1],v[n]++;return(v));v[n]=1;n--);vector(#v+1,i,1)} al(n)=local(v,r);v=vector(n,i,1);r=vector(n);while(#v==n,r[numpal(v)]++;v=nextsetpart(v));r
Comments