This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188814 #37 Aug 30 2016 10:19:24 %S A188814 0,0,0,1,4,12,27,57,107,192,327,538,855,1329,2018,3003,4402,6349,9045, %T A188814 12720,17713,24395,33335,45118,60655,80888,107242,141177,184905, %U A188814 240679,311850,401860,515725,658630,838006,1061561,1340193,1685271,2112576,2638727 %N A188814 Sum of the "complements" of the integer partitions of n. %C A188814 Consider the m x k rectangle corresponding to an integer partition p of n, where m is the greatest part of p and k is the number of parts of p. Fit the Ferrers diagram of p inside its corresponding rectangle. a(n) is the number of empty spaces in all such rectangles over all partitions of n. %D A188814 Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge, 2003, page 145. %H A188814 Alois P. Heinz, <a href="/A188814/b188814.txt">Table of n, a(n) for n = 0..1000</a> %F A188814 a(n) = Sum_{k>0} k*A268192(n,k). - _Alois P. Heinz_, Feb 12 2016 %e A188814 a(4) = 4 because the partitions 4, 2+2, 1+1+1+1 have no empty spaces while the partitions 3+1 and 2+1+1 each have two. %p A188814 b:= proc(n, i) option remember; local f, g; %p A188814 if n=0 or i=1 then [1, n] %p A188814 elif i<1 then [0, 0] %p A188814 else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i)); %p A188814 [f[1]+g[1], f[2]+g[2]+g[1]] %p A188814 fi %p A188814 end: %p A188814 a:= n-> add(add(i, i=b(n-j, min(j, n-j)))*j, j=1..n) -n*b(n, n)[1]: %p A188814 seq(a(n), n=0..40); # _Alois P. Heinz_, Apr 22 2011, Apr 11 2012 %t A188814 f[list_]:= Total[Select[Reverse[Table[Max[list]-list[[i]],{i,1,Length[list]}]],#>0&]]; %t A188814 Table[Total[Map[f, IntegerPartitions[n]]],{n,0,30}] %t A188814 (* second program: *) %t A188814 b[n_, i_] := b[n, i] = Module[{f, g}, If [n==0 || i==1, {1, n}, If[i<1, {0, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]}]]; %t A188814 a[n_] := Sum[Sum[i, {i, b[n-j, Min[j, n-j]]}]*j, {j, 1, n}]-n*b[n,n][[1]]; %t A188814 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Aug 30 2016, after _Alois P. Heinz_ *) %Y A188814 Cf. A066186, A182094, A268192. %K A188814 nonn %O A188814 0,5 %A A188814 _Geoffrey Critzer_, Apr 22 2011