cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188814 Sum of the "complements" of the integer partitions of n.

This page as a plain text file.
%I A188814 #37 Aug 30 2016 10:19:24
%S A188814 0,0,0,1,4,12,27,57,107,192,327,538,855,1329,2018,3003,4402,6349,9045,
%T A188814 12720,17713,24395,33335,45118,60655,80888,107242,141177,184905,
%U A188814 240679,311850,401860,515725,658630,838006,1061561,1340193,1685271,2112576,2638727
%N A188814 Sum of the "complements" of the integer partitions of n.
%C A188814 Consider the m x k rectangle corresponding to an integer partition p of n, where m is the greatest part of p and k is the number of parts of p.  Fit the Ferrers diagram of p inside its corresponding rectangle.  a(n) is the number of empty spaces in all such rectangles over all partitions of n.
%D A188814 Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge, 2003, page 145.
%H A188814 Alois P. Heinz, <a href="/A188814/b188814.txt">Table of n, a(n) for n = 0..1000</a>
%F A188814 a(n) = Sum_{k>0} k*A268192(n,k). - _Alois P. Heinz_, Feb 12 2016
%e A188814 a(4) = 4 because the partitions 4, 2+2, 1+1+1+1 have no empty spaces while the partitions 3+1 and 2+1+1 each have two.
%p A188814 b:= proc(n, i) option remember; local f, g;
%p A188814       if n=0 or i=1 then [1, n]
%p A188814     elif i<1 then [0, 0]
%p A188814     else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
%p A188814          [f[1]+g[1], f[2]+g[2]+g[1]]
%p A188814       fi
%p A188814     end:
%p A188814 a:= n-> add(add(i, i=b(n-j, min(j, n-j)))*j, j=1..n) -n*b(n, n)[1]:
%p A188814 seq(a(n), n=0..40);  # _Alois P. Heinz_, Apr 22 2011, Apr 11 2012
%t A188814 f[list_]:= Total[Select[Reverse[Table[Max[list]-list[[i]],{i,1,Length[list]}]],#>0&]];
%t A188814 Table[Total[Map[f, IntegerPartitions[n]]],{n,0,30}]
%t A188814 (* second program: *)
%t A188814 b[n_, i_] := b[n, i] = Module[{f, g}, If [n==0 || i==1, {1, n}, If[i<1, {0, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]}]];
%t A188814 a[n_] := Sum[Sum[i, {i, b[n-j, Min[j, n-j]]}]*j, {j, 1, n}]-n*b[n,n][[1]];
%t A188814 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Aug 30 2016, after _Alois P. Heinz_ *)
%Y A188814 Cf. A066186, A182094, A268192.
%K A188814 nonn
%O A188814 0,5
%A A188814 _Geoffrey Critzer_, Apr 22 2011