This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A188816 #14 Feb 19 2021 07:25:00 %S A188816 1,0,1,2,-1,0,0,1,-3,6,-2,9,-6,1,0,0,0,1,4,-12,12,-3,-44,60,-24,3,64, %T A188816 -48,12,-1,0,0,0,0,1,-5,20,-30,20,-4,155,-300,210,-60,6,-655,780,-330, %U A188816 60,-4,625 %N A188816 Triangle read by rows: row n gives (coefficients * (n-1)!) in expansion of pieces k=0..n-1 of the probability mass function for the Irwin-Hall distribution, lowest powers first. %C A188816 This is the probability distribution for the sum of n independent, random variables, each uniformly distributed on [0,1). %H A188816 Alois P. Heinz, <a href="/A188816/b188816.txt">Rows n = 1..32, flattened</a> %H A188816 Philip Hall, <a href="http://www.jstor.org/stable/2331961">The Distribution of Means for Samples of Size N Drawn from a Population in which the Variate Takes Values Between 0 and 1, All Such Values Being Equally Probable</a>, Biometrika, Vol. 19, No. 3/4. (Dec., 1927), pp. 240-245. %H A188816 Wikipedia, <a href="http://en.wikipedia.org/wiki/Irwin%E2%80%93Hall_distribution">Irwin-Hall distribution</a> %F A188816 G.f. for piece k in row n: (1/(n-1)!) * Sum_{j=0..k} (-1)^j * C(n,j) * (x-j)^(n-1). %e A188816 For n = 4, k = 1 (four variables, second piece) the function is the polynomial: 1/6 * (4 - 12x + 12x^2 -3x^3). That gives the subsequence [4, -12, 12, -3]. %e A188816 Triangle begins: %e A188816 [1]; %e A188816 [0,1], [2,-1]; %e A188816 [0,0,1], [-3,6,-2], [9,-6,1]; %e A188816 ... %p A188816 f:= proc(n, k) option remember; %p A188816 add((-1)^j * binomial(n, j) * (x-j)^(n-1), j=0..k) %p A188816 end: %p A188816 T:= (n, k)-> seq(coeff(f(n, k), x, t), t=0..n-1): %p A188816 seq(seq(T(n, k), k=0..n-1), n=1..7); # _Alois P. Heinz_, Jul 06 2017 %t A188816 f[n_, k_] := f[n, k] = Sum[(-1)^j Binomial[n, j] (x-j)^(n-1), {j, 0, k}]; %t A188816 T[n_, k_] := Table[Coefficient[f[n, k], x, t], {t, 0, n-1}]; %t A188816 Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 7}] // Flatten (* _Jean-François Alcover_, Feb 19 2021, after _Alois P. Heinz_ *) %Y A188816 Differentiation of A188668. %K A188816 sign,look,tabf %O A188816 1,4 %A A188816 _Thomas Dybdahl Ahle_, Apr 11 2011